Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Anal Bioanal Chem ; 411(13): 2793-2802, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30931506

RESUMO

A powerful technique to detect bone biomarkers has been developed for assessment of osteoporosis at the early stage. Two-dimensional multilayered gold-nanoparticle thin film (MTF-AuNPs) was demonstrated as a promising test platform for detection of bone biomarker, hydroxyproline (HYP), measured by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). With strong surface plasmon resonance and excellent homogeneity, facilely prepared, highly ordered, and large-scale MTF-AuNPs revealed high sensitivity of HYP in the SALDI-MS measurement without additional matrixes, such as α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). Furthermore, the mass spectrum of HYP with MTF-AuNPs was significantly improved in signal intensity enhancement, background noise reduction, and signal-to-noise ratio amplification. The excellent reproducibility of HYP spectra with only 9.3% relative signal variation could be attributed to MTF-AuNPs' high absorbance at a wavelength of 337 nm, low heat capacity, superior thermal conductivity, and outstanding homogeneity. The calibration curve showed high linear correlation between mass spectrum intensity and HYP concentration in the range of 1 to 100 µM, covering the whole level in healthy people and osteoporosis patients. In particular, the serum sample was directly deposited onto the MTF-AuNP sample substrate without any pretreatment and its HYP concentration was then successfully determined. We believe that the combination of SALDI-MS and MTF-AuNP sample substrates would be a potential approach for bone biomarker detection in the osteoporosis risk assessment. Graphical abstract.


Assuntos
Biomarcadores/sangue , Ouro/química , Nanopartículas Metálicas/química , Osteoporose/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Biomarcadores/análise , Humanos , Hidroxiprolina/sangue , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Osteoporose/diagnóstico , Reprodutibilidade dos Testes , Medição de Risco
2.
Anal Chem ; 90(6): 3974-3980, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466668

RESUMO

The glucose metabolism rate in cancer cells is a crucial piece of information for the cancer aggressiveness. A feasible method to monitor processes of oncogenic mutations has been demonstrated in this work. The fluorescent gold nanoclusters conjugated with glucose (glucose-AuNCs) were successfully synthesized as a cancer-targeting probe for glucose transporters (Gluts) overexpressed by U-87 MG cancer cells, which can be observed under confocal microscopy. The structural and optical characterizations of fluorescent glucose-AuNCs were confirmed by transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The MTT assay exhibited the high biocompatibility of water-soluble glucose-AuNCs for further biomedical applications. The glucose metabolic cleavage of glucose-AuNCs by glycolytic enzymes from U-87 MG cancer cell was measured by fluorescence change of glucose-AuNCs. The fluorescence change based on the integrated area under fluorescence spectra ( A t) of glucose-AuNCs was plotted as a function of different reaction time ( t) with glycolytic enzymes. The fitted curve of A t versus t showed the first-order kinetics to explain the mechanism of glucose metabolic cleavage rate of glucose-AuNCs by glycolytic enzymes. The rate constant k could be utilized to determine the glucose metabolism rate of glucose-AuNCs for the quantitative analysis of cancer aggressiveness. Our work provides a practical application of target-specific glucose-AuNCs as a fluorescence probe to analyze the glucose metabolism in Gluts overexpressed cancer cells.


Assuntos
Corantes Fluorescentes/química , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Glicólise , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/metabolismo , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Glucose/química , Proteínas Facilitadoras de Transporte de Glucose/análise , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Neoplasias/enzimologia
3.
Nanoscale ; 9(31): 11119-11125, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28741641

RESUMO

The design of a homogeneous sample plate to solve the sweet heating spot issues is the key step to expand the applicability of surface-assisted laser desorption/ionization mass spectrometry (SALDI MS). Herein, large-scale and highly oriented Langmuir-Blodgett (LB) films of uniform silver nanocrystals have been fabricated as a highly efficient and matrix-free sample plate for SALDI MS. Three individual silver nanocrystals (cubes, cuboctahedra and octahedra) assembled LB films have been applied as the sample plates for glucose detection by SALDI MS without an additional matrix. The results show that the signal intensity, background noise, signal-to-noise ratio and reproducibility have been significantly improved using LB films as the sample plate in comparison with commercial matrixes of CHCA and DHB. In particular, a relative signal of 5.7% was obtained for LB films of silver cuboctahedra. The significant improvement in the SALDI MS measurement could be attributed to the homogenous dissipation of laser irradiation energy to create a large area of the sweet heating spot on well-oriented silver cuboctahedra-based LB film. This ready-to-use sample plate has the potential for widespread commercial applications in SALDI MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA