Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(17): 11775-11783, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38617571

RESUMO

Organic piezoelectric materials are emerging as integral components in the development of advanced implantable self-powered sensors for the next generation. Despite their promising applications, a key limitation lies in their reduced mechanical force-to-electricity conversion efficiency. In this study, we present a breakthrough in the fabrication of soft poly(vinylidene fluoride) (PVDF) organic electrospun piezoelectric nanofibers (OEPNs) with exceptional piezoelectric performance achieved through the incorporation of zinc oxide nanorods (ZnO NR). The inclusion of ZnO NR proved instrumental in augmenting the nanocrystallization of PVDF organic electrospun piezoelectric nanofibers (OEPNs), leading to a highly efficient crystal phase transformation from the α phase to the ß/γ phase, serving as superior piezoelectric working dipoles. The resulting PVDF/ZnO NR OEPNs exhibited unparalleled piezoelectric output voltage and current density, particularly noteworthy under a micro-pressure of 1 kPa and a low frequency of 1.5 Hz. Utilizing the obtained PVDF/ZnO NR OEPNs as the piezoelectric working element, we engineered a soft self-powered micro-pressure sensor. This sensor was implanted simultaneously on the cardiovascular walls of the heart and femoral artery in pigs. The sensor demonstrated precise monitoring and recording capabilities for micro-pressure changes during various physiological states, spanning from wakefulness to coma, euthanasia, and notably, the formation of cardiac thrombus. These findings underscore the immense potential of the implantable self-powered sensor for the assessment and diagnosis of pressure-related cardiovascular diseases, such as thrombus and atherosclerosis, during the postoperative recovery phase. This innovative technology offers valuable insights into the dynamic physiological states, paving the way for enhanced postoperative care and management of cardiovascular conditions.

2.
Nanomaterials (Basel) ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202581

RESUMO

Electrostatic accumulation is associated with almost all powder-conveying processes which could bring about electrostatic discharges. In most cases of industrial accidents, electrostatic discharge is proven to be the primary source of ignition and explosion. Herein, a surface modification process of polyaniline (PANI) is proposed to construct highly exothermic special powders, namely, HMX@PANI energetic composites, with low charge accumulation for improving powder electrostatic safety. Pure HMX are encapsulated within the PANI-conductive polymer layer through simple hydrogen bonding. Simulation results demonstrate that the forming process of HMX/aniline structure is a spontaneously thermodynamical process. The resultant inclusion complex exhibits excellent thermal stability, remarkable compatibility and intensive heat release. Importantly, PANI possesses superior electrostatic mobility characteristics because of the π-conjugated ligand, which can significantly reduce the accumulated charges on the surface of energetic powders. Moreover, the modified explosive has a narrower energy gap, which will improve the electron transition by reducing the energy barrier. The electrostatic accumulation test demonstrates that HMX@PANI composites possess a trace electrostatic accumulation of 34 nC/kg, which is two orders of magnitude lower than that of pure HMX (-6600 nC/kg) and might indicate a higher electrostatic safety. In conclusion, this surface modification process shows great promise for potential applications and could be extensively used in the establishment of high electrostatic safety for special powders.

3.
Micromachines (Basel) ; 12(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34945403

RESUMO

The micro-bolometer is important in the field of infrared imaging, although improvements in its performance have been limited by traditional materials. SiGe/Si multi-quantum-well materials (SiGe/Si MQWs) are novelty thermal-sensitive materials with a significantly high TCR and a comparably low 1/f noise. The application of such high-performance monocrystalline films in a micro-bolometer has been limited by film integration technology. This paper reports a SiGe/Si MQWs micro-bolometer fabrication with heterogeneous integration. The integration with the SiGe/Si MQWs handle wafer and dummy read-out circuit wafer was achieved based on adhesive wafer bonding. The SiGe/Si MQWs infrared-absorption structure and thermal bridge were calculated and designed. The SiGe/Si MQWs wafer and a 320 × 240 micro-bolometer array of 40 µm pitch L-type pixels were fabricated. The test results for the average absorption efficiency were more than 90% at the wavelength of 8-14 µm. The test pixel was measured to have a thermal capacity of 1.043 × 10-9 J/K, a thermal conductivity of 1.645 × 10-7 W/K, and a thermal time constant of 7.25 ms. Furthermore, the total TCR value of the text pixel was measured as 2.91%/K with a bias voltage of 0.3 V. The SiGe/Si MQWs micro-bolometer can be widely applied in commercial fields, especially in early medical diagnosis and biological detection.

4.
Micromachines (Basel) ; 12(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34945436

RESUMO

Three-dimensional integration technology provides a promising total solution that can be used to achieve system-level integration with high function density and low cost. In this study, a wafer-level 3D integration technology using PDAP as an intermediate bonding polymer was applied effectively for integration with an SOI wafer and dummy a CMOS wafer. The influences of the procedure parameters on the adhesive bonding effects were determined by Si-Glass adhesive bonding tests. It was found that the bonding pressure, pre-curing conditions, spin coating conditions, and cleanliness have a significant influence on the bonding results. The optimal procedure parameters for PDAP adhesive bonding were obtained through analysis and comparison. The 3D integration tests were conducted according to these optimal parameters. In the tests, process optimization was focused on Si handle-layer etching, PDAP layer etching, and Au pillar electroplating. After that, the optimal process conditions for the 3D integration process were achieved. The 3D integration applications of the micro-bolometer array and the micro-bridge resistor array were presented. It was confirmed that 3D integration based on PDAP adhesive bonding is suitable for the fabrication of system-on-chip when using MEMS and IC integration and that it is especially useful for the fabrication of low-cost suspended-microstructure on-CMOS-chip systems.

5.
Front Chem ; 9: 812375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096774

RESUMO

Self-supporting electrodes usually show excellent electrocatalytic performance which does not require coating steps, additional polymer binders, and conductive additives. Rapid in situ growth of highly active ingredient on self-supporting electric conductors is identified as a straight forward path to prepare binder-free and integrated electrodes. Here, Pd-doped Co3O4 loaded on carbon nanofiber materials through electrospinning and heat treatment was efficiently synthesized, and used as a free-standing electrode. Benefiting from its abundant active sites, high surface area and effective ionic conduction capability from three-dimensional (3D) nanofiber framework, Pd-Co3O4@CNF works as bifunctional oxygen electrode and exhibits superior activity and stability superior to commercial catalysts.

6.
Rev Sci Instrum ; 86(12): 124705, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724054

RESUMO

Compact pulse generators which utilized soft ferromagnets as an initial energy carrier inside multi-turn coil and hard ferromagnets to provide the initial magnetic field outside the coil have been studied. Two methods of reducing the magnetic flux in the generators have been studied: (1) by igniting gunpowder to launch the core out of the generator, and (2) by detonating explosives that demagnetize the core. Several types of compact generators were explored to verify the feasibility. The generators with an 80-turn coil that utilize gunpowder were capable of producing pulses with amplitude 78.6 V and the full width at half maximum was 0.41 ms. The generators with a 37-turn coil that utilize explosive were capable of producing pulses with amplitude 1.41 kV and the full width at half maximum was 11.68 µs. These two methods were both successful, but produce voltage waveforms with significantly different characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA