Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Maturitas ; 188: 108082, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39089049

RESUMO

BACKGROUND: Intrinsic capacity reflects an individual's functions and capacities across their lifetime. There are few studies on whether the level of intrinsic capacity can predict long-term mortality in Chinese populations. OBJECTIVE: To explore the effects of intrinsic capacity on long-term outcomes in older Chinese adults. METHODS: Data were obtained from the Beijing Longitudinal Study of Aging. Overall, 1699 community-dwelling adults aged ≥60 years were included and followed up for 8 years. Intrinsic capacity was determined according to the World Health Organization definition. The predictive ability for adverse outcomes was assessed using the age- and sex-adjusted Cox proportional hazards model. RESULTS: A decline in intrinsic capacity domains was observed in 729 (42.9 %) participants. Declines in the mobility, cognition, vitality, sensory and psychology domains were observed in 21.8 %, 15.1 %, 11.4 %, 9.10 %, and 14.2 % of the participants, respectively. Low intrinsic capacity was associated with worse physical performance, frailty, social frailty, chronic diseases, fracture, and falls. A greater decline in intrinsic capacity predicted an elevated 8-year mortality rate (decline in overall intrinsic capacity hazard ratio 2.91, 95 % confidence interval 2.44-3.47, P < 0.001; decline in one domain hazard ratio 2.11, 95 % confidence interval 1.71-2.61, P < 0.001; decline in two domains hazard ratio 3.54, 95 % confidence interval 2.81-4.45, P < 0.001; decline in three or more domains hazard ratio 5.30, 95 % confidence interval 4.09-6.87, P < 0.001); adjusted models did not affect prediction performance. Among the five domains of intrinsic capacity, cognition was the strongest predictor of mortality (hazard ratio 3.17, 95 % confidence interval 2.63-3.81, P < 0.001). CONCLUSIONS: Intrinsic capacity is useful in identifying older adults at higher risk of adverse outcomes, presenting significant implications for healthcare policies in China.

2.
Front Oncol ; 14: 1352638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988712

RESUMO

Background: Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are among the most prevalent gynecologic malignancies globally. The prognosis is abysmal once cervical cancer progresses to lymphatic metastasis. Anoikis, a specialized form of apoptosis induced by loss of cell adhesion to the extracellular matrix, plays a critical role. The prediction model based on anoikis-related genes (ARGs) expression and clinical data could greatly aid clinical decision-making. However, the relationship between ARGs and CESC remains unclear. Methods: ARGs curated from the GeneCards and Harmonizome portals were instrumental in delineating CESC subtypes and in developing a prognostic framework for patients afflicted with this condition. We further delved into the intricacies of the immune microenvironment and pathway enrichment across the identified subtypes. Finally, our efforts culminated in the creation of an innovative nomogram that integrates ARGs. The utility of this prognostic tool was underscored by Decision Curve Analysis (DCA), which illuminate its prospective benefits in guiding clinical interventions. Results: In our study, We discerned a set of 17 survival-pertinent, anoikis-related differentially expressed genes (DEGs) in CESC, from which nine were meticulously selected for the construction of prognostic models. The derived prognostic risk score was subsequently validated as an autonomous prognostic determinant. Through comprehensive functional analyses, we observed distinct immune profiles and drug response patterns among divergent prognostic stratifications. Further, we integrated the risk scores with the clinicopathological characteristics of CESC to develop a robust nomogram. DCA corroborated the utility of our model, demonstrating its potential to enhance patient outcomes through tailored clinical treatment strategies. Conclusion: The predictive signature, encompassing nine pivotal genes, alongside the meticulously constructed nomogram developed in this research, furnishes clinicians with a sophisticated tool for tailoring treatment strategies to individual patients diagnosed with CESC.

3.
J Orthop Translat ; 47: 50-62, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007035

RESUMO

Background: The mechanism by which chondrocyte senescence aggravate OA progression has not yet been well elucidated. The aim of this study was to investigate the chondrocyte senescence related gene biosignatures in OA, and to analyze on the underlying mechanisms of senescence in OA. Materials and methods: We intersected osteoarthritis dataset GSE82107 from GEO database and senescence dataset from CellAge database of human senescence-associated genes based on genetic manipulations experiments plus gene expression profilin, and screened out 4 overlapping genes. The hub genes were verified in vitro and in human OA cartilage tissues by qRT-PCR. We further confirmed the function of mitogen-activated protein kinase 12 (MAPK12) and Fos proto-oncogene (FOS) in OA in vitro and in vivo by qRT-PCR, western blotting, Edu staining, immunofluorescence, SA-ß-gal staining, HE, IHC, von frey test, and hot plate. Results: 1458 downregulated and 218 upregulated DEGs were determined from GSE82107, and 279 human senescence-associated genes were downloaded from CellAge database. After intersection assay, we screened out 4 overlapping genes, of which FOS, CYR61 and TNFSF15 were upregulated, MAPK12 was downregulated. The expression of MAPK12 was obviously downregulated, whereas the expression profiles of FOS, CYR61 and TNFSF15 were remarkedly upregulated in H2O2- or IL-1ß-stimulated C28/I2 cells, human OA cartilage tissues, and knee cartilage of aging mice. Furthermore, both MAPK12 over-expression and FOS knock-down can promote cell proliferation and cartilage anabolism, inhibit cell senescence and cartilage catabolism, relieve joint pain in H2O2- or IL-1ß-stimulated C28/I2 cells and mouse primary chondrocytes, destabilization of the medial meniscus (DMM) mice. Conclusion: This study explored that MAPK12 and FOS are involved in the occurrence and development of OA through modulating chondrocyte senescence. They might be biomarkers of OA chondrocyte senescence, and provides some evidence as subsequent possible therapeutic targets for OA. The translational potential of this article: The translation potential of this article is that we revealed MAPK12 and FOS can effectively alleviate OA by regulating chondrocyte senescence, and thus provided potential therapeutic targets for prevention or treatment of OA in the future.

4.
Brain Behav Immun ; 120: 403-412, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871062

RESUMO

Persistent psychological stress can affect immune homeostasis and is a key factor in the development of depression. Many efforts are focused on the identifcation of pathways that link the immune system and mood disorders. Here, we found that psychological stress caused an increase in the frequency of brain-associated neutrophils and the level of neutrophil-specific antigen CD177 on peripheral neutrophils in male mice. Upregulated levels of blood CD177 are associated with depression in humans. Neutrophil depletion or Cd177 deficiency protected mice from stress-induced behavioral deficits. Importantly, adoptive transfer of CD177+ neutrophils from stressed mice increased the frequency of brain-associated leukocytes, including neutrophils, and caused behavioral defects in naive mice. These effects may be related to the endothelial adhesion advantage of CD177+ neutrophils and the interference of serine protease on endothelial junction. Our findings suggest a critical link between circulating CD177+ neutrophils and psychological stress-driven behavioral disorder.


Assuntos
Comportamento Animal , Camundongos Endogâmicos C57BL , Neutrófilos , Estresse Psicológico , Animais , Neutrófilos/metabolismo , Masculino , Estresse Psicológico/metabolismo , Estresse Psicológico/imunologia , Camundongos , Comportamento Animal/fisiologia , Proteínas Ligadas por GPI/metabolismo , Receptores de Superfície Celular/metabolismo , Depressão/metabolismo , Depressão/imunologia , Encéfalo/metabolismo , Humanos
5.
Aging Dis ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739942

RESUMO

In older adults, physical frailty and cognitive impairment contribute to adverse outcomes. However, the research on mechanisms underlying physical frailty and cognitive impairment is limited. Low-grade chronic inflammation is a characteristic of aging. Particularly, an imbalance in pro- and anti-inflammatory mechanisms may be involved in frailty and neurodegenerative disorders. Therefore, exploring the inflammatory markers of physical frailty and cognitive impairment is crucial to fully understanding these mechanisms and establishing a substantial link between these two disorders. Notably, few studies have focused on exploring inflammatory markers in both physical frailty and cognitive impairment, posing a major challenge in elucidating the link between them. Therefore, substantial efforts are required for the better prevention of physical frailty and cognitive impairment. In this review, we explored the role of inflammatory markers as a potential link between frailty and cognitive impairment.

6.
Arch Gerontol Geriatr ; 124: 105452, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38728820

RESUMO

BACKGROUNDS: Intrinsic capacity (IC), the sum of individual mental and physical capabilities, as well as living environment and behavior, jointly determine the functional ability of older adults, shifting the focus from disease to function. At the population level, IC in older adults is associated with adverse health outcomes, such as disability, falls, and death. At the individual level, IC changes dynamically. However, studies on the longitudinal IC trajectory and the factors influencing IC deterioration are limited. We aimed to analyze the IC trajectory and explore the risk factors for IC deterioration in Chinese older adults. METHODS: Data were obtained from the baseline (2011-2012) and 4-year follow-up (2015) CHARLS surveys, including 1906 people aged 60 years and older. IC comprises six dimensions: locomotion, vitality, hearing, vision, cognition, and psychology. IC trajectory was categorized into three groups: improved, maintained, and deteriorated. Logistic regression analysis was used to analyze factors influencing the trajectory of IC deterioration. RESULTS: After 4 years, 32.1 % had deteriorated, 38.5 % remained stable, and 29.4 % had improved. Age, low level of education, widowed were independently associated with IC deterioration. CONCLUSIONS: Dynamic IC monitoring supports the development of individualized intervention policies to delay or prevent IC deterioration.


Assuntos
Vida Independente , Humanos , Idoso , Masculino , Feminino , China/epidemiologia , Estudos Longitudinais , Vida Independente/estatística & dados numéricos , Pessoa de Meia-Idade , Fatores de Risco , Avaliação Geriátrica/métodos , Idoso de 80 Anos ou mais , Atividades Cotidianas , Estado Funcional , Aposentadoria/estatística & dados numéricos , Aposentadoria/psicologia
7.
Sci Rep ; 14(1): 8534, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609394

RESUMO

CD36 may defect on platelets and/or monocytes in healthy individuals, which was defined as CD36 deficiency. However, we did not know the correlation between the molecular and protein levels completely. Here, we aim to determine the polymorphisms of the CD36 gene, RNA level, and CD36 on platelets and in plasma. The individuals were sequenced by Sanger sequencing. Bioinformational analysis was used by the HotMuSiC, CUPSAT, SAAFEC-SEQ, and FoldX. RNA analysis and CD36 protein detection were performed by qPCR, flow cytometry, and ELISA. In this study, we found c.1228_1239delATTGTGCCTATT (allele frequency = 0.0072) with the highest frequency among our cohort, and one mutation (c.1329_1354dupGATAGAAATGATCTTACTCAGTGTTG) was not present in the dbSNP database. 5 mutations located in the extracellular domain sequencing region with confirmation in deficient individuals, of which c.284T>C, c.512A>G, c.572C>T, and c.869T>C were found to have a deleterious impact on CD36 protein stability. Furthermore, the MFI of CD36 expression on platelets in the mutation-carry, deleterious-effect, and deficiency group was significantly lower than the no-mutation group (P < 0.0500). In addition, sCD36 levels in type II individuals were significantly lower compared with positive controls (P = 0.0060). Nevertheless, we found the presence of sCD36 in a type I individual. RNA analysis showed CD36 RNA levels in platelets of type II individuals were significantly lower than the positive individuals (P = 0.0065). However, no significant difference was observed in monocytes (P = 0.7500). We identified the most prevalent mutation (c.1228_1239delATTGTGCCTATT) among Kunming donors. Besides, our results suggested RNA level alterations could potentially underlie type II deficiency. Furthermore, sCD36 may hold promise for assessing immune reaction risk in CD36-deficient individuals, but more studies should be conducted to validate this hypothesis.


Assuntos
Transtornos Plaquetários , Antígenos CD36 , Humanos , Antígenos CD36/genética , Plaquetas , Bases de Dados Factuais , RNA
8.
J Ethnopharmacol ; 326: 117778, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38310990

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In China, the Chinese patent drug Realgar-Indigo naturalis Formula (RIF) is utilized for the therapy of acute promyelocytic leukemia (APL). Comprising four traditional Chinese herb-Realgar, Indigo naturalis, Salvia miltiorrhiza, and Pseudostellaria heterophylla-it notably includes tetra-arsenic tetra-sulfide, indirubin, tanshinone IIa, and total saponins of Radix Pseudostellariae as its primary active components. Due to its arsenic content, RIF distinctly contributes to the therapy for APL. However, the challenge of arsenic resistance in APL patients complicates the clinical use of arsenic agents. Interestingly, RIF demonstrates a high remission rate in APL patients, suggesting that its efficacy is not significantly compromised by arsenic resistance. Yet, the current state of research on RIF's ability to reverse arsenic resistance remains unclear. AIM OF THE STUDY: To investigate the mechanism of different combinations of the compound of RIF in reversing arsenic resistance in APL. MATERIALS AND METHODS: The present study utilized the arsenic-resistant HL60-PMLA216V-RARα cell line to investigate the effects of various RIF compounds, namely tetra-arsenic tetra-sulfide (A), indirubin (I), tanshinone IIa (T), and total saponins of Radix Pseudostellariae (S). The assessment of cell viability, observation of cell morphology, and evaluation of cell apoptosis were performed. Furthermore, the mitochondrial membrane potential, changes in the levels of PMLA216V-RARα, apoptosis-related factors, and the PI3K/AKT/mTOR pathway were examined, along with autophagy in all experimental groups. Meanwhile, we observed the changes about autophagy after blocking the PI3K or mTOR pathway. RESULTS: Tanshinone IIa, indirubin and total saponins of Radix Pseudostellariae could enhance the effect of tetra-arsenic tetra-sulfide down-regulating PMLA216V-RARα, and the mechanism was suggested to be related to inhibiting mTOR pathway to activate autophagy. CONCLUSIONS: We illustrated that the synergistic effect of different compound combinations of RIF can regulate autophagy through the mTOR pathway, enhance cell apoptosis, and degrade arsenic-resistant PMLA216V-RARα.


Assuntos
Abietanos , Arsênio , Arsenicais , Medicamentos de Ervas Chinesas , Leucemia Promielocítica Aguda , Saponinas , Humanos , Arsênio/efeitos adversos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/induzido quimicamente , Fosfatidilinositol 3-Quinases , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Saponinas/uso terapêutico
9.
Aging Clin Exp Res ; 36(1): 36, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345670

RESUMO

BACKGROUND: Intrinsic capacity is the combination of individual physical and mental abilities, reflecting the aging degree of the older adults. However, the mechanisms and metabolic characteristics of the decline in intrinsic capacity are still unclear. AIMS: To identify metabolic signatures and associated pathways of decline in intrinsic capacity based on the metabolite features. METHODS: We recruited 70 participants aged 77.19 ± 8.31 years. The five domains of intrinsic capacity were assessed by Short Physical Performance Battery (for mobility), Montreal cognition assessment (for cognition), 30-Item Geriatric Depression Scale (for psychology), self-reported hearing/visual impairment (for sensory) and Nutritional risk screening (for vitality), respectively. The serum samples of participants were analyzed by liquid chromatography-mass spectrometry-based metabolomics, followed by metabolite set enrichment analysis and metabolic pathway analysis. RESULTS: There were 50 participants with a decline in intrinsic capacity in at least one of the domains. A total of 349 metabolites were identified from their serum samples. Overall, 24 differential metabolites, 5 metabolite sets and 13 pathways were associated with the decline in intrinsic capacity. DISCUSSION: Our results indicated that decline in intrinsic capacity had unique metabolomic profiles. CONCLUSION: The specific change of acyl carnitines was observed to be a feature of decline in intrinsic capacity. Dysregulation of the pentose phosphate pathway and of arginine and ornithine metabolism was strongly associated with the decline in intrinsic capacity.


Assuntos
Arginina , Carnitina/análogos & derivados , Via de Pentose Fosfato , Humanos , Idoso , Metabolômica/métodos , China , Ornitina
10.
Phys Rev Lett ; 132(3): 035001, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307079

RESUMO

The interaction of light and swift electrons has enabled phase-coherent manipulation and acceleration of electron wave packets. Here, we investigate this interaction in a new regime where low-energy electrons (∼20-200 eV) interact with a phase-matched light field. Our analytical and one-dimensional numerical study shows that slow electrons are subject to strong confinement in the energy domain due to the nonvanishing curvature of the electron dispersion. The spectral trap is tunable and an appropriate choice of light field parameters can reduce the interaction dynamics to only two energy states. The capacity to trap electrons expands the scope of electron beam physics, free-electron quantum optics and quantum simulators.

11.
Immun Ageing ; 21(1): 4, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184585

RESUMO

Global population aging poses a tremendous burden on the health care system worldwide. Frailty is associated with decreased physical reserve and is considered an important indicator of adverse events in the older population. Therefore, there is growing interest in the early diagnosis and intervention of frailty, but the cellular mechanisms responsible for frailty are still not completely understood. Chronic inflammation is related to decreased physical function and increased disease risk. Additionally, multiple human and animal studies suggest that inflammation probably plays the largest role in contributing to frailty. Some inflammatory markers have been proposed to predict physical frailty. However, there are still large gaps in knowledge related to the clinical application of these markers in frail patients. Therefore, understanding the biological processes and identifying recognized and reliable markers are urgent and pivotal tasks for geriatricians. In the present review, we broadly summarize the inflammatory markers that may have potential diagnostic and therapeutic use, thereby translating them into health care for older people with frailty in the near future.

12.
J Adv Res ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219870

RESUMO

INTRODUCTION: Osteoarthritis (OA) is a degenerative bone disease associated with ageing, characterized by joint pain, stiffness, swelling and deformation. Currently, pharmaceutical options for the clinical treatment of OA are very limited. Circular RNAs(cirRNAs) have garnered significant attention in OA and related drug development due to their unique RNA sequence characteristics.Therefore,exploring the role of cirRNAs in the occurrence and development of OA is of paramount importance for the development of effective medications for OA. OBJECTIVES: To identify a novel circRNA, circUbqln1, for treating osteoarthritis and elucidate its pathophysiological role and mechanisms in the treatment of OA. METHODS: The circUbqln1 expression and distribution were determined by qRT-PCR and FISH. XBP1 gene knockout(XBP1 cKO) spontaneous OA and DMM model and WT mouse CIOA model were used to explore the role of XBP1 and circUbqln1 in OA.Overexpression or knockdown of circUbqln1 lentivirus was used to observe the impacts of circUbqln1 on primary chondrocytes,C28/I2 and mice in vitro and in vivo.Chromatin immunoprecipitation,luciferase reporter assay,RNA pulldown,mass spectrometry,RNA immunoprecipitation,fluorescence in situ hybridization,and flow cytometry to explore the molecular mechanisms of circUbqln1. RESULTS: It was found that cartilage-specific XBP1 cKO mice exhibited a faster OA progression compared to normal's.Importantly,transcript factor XBP1s has the capacity to impede the biogenesis of circUbqln1,derived from Ubqln1. The circUbqln1 promotes cartilage catabolism and inhibits anabolism, therefore accelerates the occurrence of OA.Mechanismly,circUbqln1 can translocate to the chondrocyte nucleus with the assistance of phosphorylated 14-3-3ζ, upregulate the transcriptional activity of the proline dehydrogenase(Prodh) promoter and PRODH enzyme activity. Consequently, this leads to the promotion of proline degradation and the inhibition of collagen synthesis,ultimately culminating in the impairment of cartilage and its structural integrity. CONCLUSION: CircUbqln1 plays a crucial role in the occurrence and development of OA, indicating that the inhibition of circUbqln1 holds promise as a significant approach for treating OA in the future.

13.
Cell Signal ; 113: 110929, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37875231

RESUMO

Abnormal differentiation and proliferation of chondrocytes leads to various diseases related to growth and development. The process of chondrocyte differentiation involves a series of complex cellular and molecular interactions. X-box binding protein 1 (XBP1), an essential molecule of the unfolded protein response (UPR) in Endoplasmic Reticulum (ER) stress, participated in cartilage development and causes other related diseases. We previously reported that XBP1 deficiency in cartilage impacts the function and associated diseases of many different tissues including cartilage. However, how differential expression of genes modulates the roles of cartilage and other tissues when XBP1 is lack of in chondrocytes remains unclear. We aimed to screen for differentially expressed (DE) genes in cartilage, brain, heart, and muscle by high-throughput sequencing in XBP1 cartilage-specific knockout (CKO) mice. Further, gene co-expression networks were constructed by weighted gene co-expression network analysis (WGCNA) algorithm and pivot genes were identified in the above four tissues. Protein detection, Hematoxylin-eosin (HE) staining and immunohistochemistry (IHC) experiments have proved that these differentially co-expressed genes participate in the downstream regulatory pathway of different tissues and affect tissue function.Significantly differentially expressed mRNAs [differentially expressed genes (DEGs)] were identified between XBP1 CKO mice and controls in cartilage, brain, heart, and muscle tissues, including 610, 126, 199 and 219 DEGs, respectively. 39 differentially co-expressed genes were identified in the above four tissues, and they were important pivot genes. Comprehensive analysis discovered that XBP1 deficiency in cartilage influences the difference of co-expressed genes between cartilage and other different tissues. These differentially co-expressed genes participate in downstream regulatory pathways of different tissues and affect tissue functions. Collectively, our conclusions may contribute potential biomarkers and molecular mechanisms for the mutual modulation between cartilage and different tissues and the diagnosis and treatment of diseases caused by abnormalities in different tissues. The analysis also provides meaningful insights for future genetic discoveries.


Assuntos
Cartilagem , Resposta a Proteínas não Dobradas , Animais , Camundongos , Cartilagem/metabolismo , Condrócitos/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
14.
Front Endocrinol (Lausanne) ; 14: 1267967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38425490

RESUMO

Introduction: Individuals with 17-beta-hydroxysteroid dehydrogenase type 3 (17ß-HSD3) deficiency face a multitude of challenges, primarily concerning genital appearance, potential malignancy risks, and fertility issues. This study reports our findings from an investigation involving five individuals affected by 17ß-HSD3 deficiency, ranging in age from pre-adolescence to adolescence. Notably, we identified four previously unreported mutations in these subjects. Methods: Our study included a comprehensive evaluation to determine the potential occurrence of testicular tumors. The methods involved clinical examinations, genetic testing, hormone profiling, and patient history assessments. We closely monitored the progress of the study subjects throughout their treatment. Results: The results of this evaluation conclusively ruled out the presence of testicular tumors among our study subjects. Moreover, four of these individuals successfully underwent gender transition. Furthermore, we observed significant improvements in genital appearance following testosterone treatment, particularly among patients in the younger age groups who received appropriate treatment interventions. Discussion: These findings underscore the critical importance of early intervention in addressing concerns related to genital appearance, based on our extensive clinical experience and assessments. In summary, our study provides insights into the clinical aspects of 17ß-HSD3 deficiency, emphasizing the vital significance of early intervention in addressing genital appearance concerns. This recommendation is supported by our comprehensive clinical assessments and experience.


Assuntos
17-Hidroxiesteroide Desidrogenases/deficiência , Transtorno 46,XY do Desenvolvimento Sexual , Ginecomastia , Erros Inatos do Metabolismo de Esteroides , Neoplasias Testiculares , Masculino , Adolescente , Humanos , Transtorno 46,XY do Desenvolvimento Sexual/genética , Mutação , 17-Hidroxiesteroide Desidrogenases/genética
15.
Braz. j. med. biol. res ; 52(1): e7718, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-974272

RESUMO

Pancreatic cancer is well known to be the most deadly malignancy with the worst survival rate of all cancers. High temperature requirement factor A1 (HtrA1) plays an important role in cancer cell proliferation, migration, apoptosis, and differentiation. This study aimed to explore the function of HtrA1 in pancreatic cancer cell growth and its underlying mechanism. We found that the expression of HtrA1 was lower in pancreatic cancer tissue compared to the adjacent normal tissue. Consistently, HtrA1 levels were also decreased in two human pancreatic cancer cell lines, PANC-1 and BXPC-3. Moreover, enforced expression of HtrA1 inhibited cell viability and colony formation of PANC-1 and BXPC-3 cells. Overexpression of HtrA1 promoted apoptosis and suppressed migratory ability of tumor cells. On the contrary, siRNA-mediated knockdown of HtrA1 promoted the growth potential of pancreatic cancer cells. In addition, we found that up-regulation of HtrA1 reduced the expression of Notch-1 in pancreatic cancer cells. On the contrary, knockdown of HtrA1 increased the expression levels of Notch-1. Furthermore, overexpression of Notch-1 abolished the anti-proliferative effect of HtrA1 on pancreatic cancer cells. Taken together, our findings demonstrated that HtrA1 could inhibit pancreatic cancer cell growth via regulating Notch-1 expression, which implied that HtrA1 might be developed as a novel molecular target for pancreatic cancer therapy.


Assuntos
Humanos , Neoplasias Pancreáticas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Receptor Notch1/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Diferenciação Celular , Regulação para Cima , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Receptor Notch1/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA