Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625919

RESUMO

Limax maximus, or great gray slug, is a common agriculture pest. The pest infests crops during their growth phase, creating holes in vegetable leaves, particularly in seedlings and tender leaves. A study was conducted to assess the insecticidal activity of Ageratina adenophora extract against these slugs. Factors such as fecundity, growth, hatching rate, offspring survival rate, protective enzyme activity, and detoxifying enzyme activity were examined in slugs exposed to the extract's sublethal concentration (LC50) for two different durations (24 and 48 h). The phytochemical variability of the extracts was also studied. The LC50 value of the A. adenophora extract against L. maximus was 35.9 mg/mL. This extract significantly reduced the hatching rate of eggs and the survival rate of offspring hatched from exposed eggs compared with the control. The lowest rates were observed in those exposed for 48 h. The survival, growth, protective enzyme, and detoxification activity of newly hatched and 40-day-old slugs decreased. The A. adenophora extract contained tannins, flavonoids, and saponins, possibly contributing to their biological effects. These results suggest that the extract could be used as an alternative treatment for slug extermination, effectively controlling this species.


Assuntos
Ageratina , Asteraceae , Gastrópodes , Inseticidas , Animais , Inseticidas/farmacologia , Moluscos , Extratos Vegetais/farmacologia
2.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361611

RESUMO

Pardosa pseudoannulata (P. pseudoannulata) is an essential natural predatory enemy in rice ecosystems. The fluctuating climate may cause them to experience heat stress, whereas heat shock proteins (HSPs) and antioxidant enzymes help resist heat damage. Herein, we cloned and characterized the full-length genes PpHSP27, PpHSP60, and PpHSC70 from P. pseudoannulata. Changes in gene expression levels and superoxide dismutase (SOD), catalase (CAT), and glutathione transferase (GST) activities in adult male and female P. pseudoannulata were measured at different stress exposure times and temperatures. We found that the abovementioned HSP genes belong to the sHSP, HSP60, and HSP70 families. The expression of the three HSP genes and the activities of SOD, CAT, and GST were significantly upregulated with the increasing stress temperature and time. The knockdown of the three HSP genes via RNA interference significantly decreased the survival rate of male and female P. pseudoannulata during high temperature stress. Thus, PpHSP27, PpHSP60, and PpHSC70 play an important role in the heat tolerance of P. pseudoannulata, and SOD, CAT, and GST enable recovery heat stress-induced oxidative damage. Their changes and regulation during high temperature stress can improve spiders' adaptability in the field and enhance the biological control of environmental pests.


Assuntos
Antioxidantes , Aranhas , Feminino , Masculino , Animais , Antioxidantes/metabolismo , Temperatura , Proteínas de Choque Térmico/genética , Ecossistema , Aranhas/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
3.
Insects ; 13(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135474

RESUMO

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used tool for measuring gene expression; however, its accuracy relies on normalizing the data to one or more stable reference genes. Eocanthecona furcellata (Wolff) is a polyphagous predatory natural enemy insect that preferentially feeds on more than 40 types of agricultural and forestry pests, such as those belonging to the orders Lepidoptera, Coleoptera, and Hymenoptera. However, to our knowledge, the selection of stable reference genes has not been reported in detail thus far. In this study, nine E. furcellata candidate reference genes (ß-1-TUB, RPL4, RPL32, RPS17, RPS25, SDHA, GAPDH2, EF2, and UBQ) were selected based on transcriptome sequencing results. The expression of these genes in various samples was examined at different developmental stages, in the tissues of male and female adults, and after temperature and starvation treatments. Five algorithms were used, including ΔCt, geNorm, NormFinder, BestKeeper, and RefFinder, to evaluate reference gene expression stability. The results revealed that the most stable reference genes were RPL32 and RPS25 at different developmental stages; RPS17, RPL4, and EF2 for female adult tissue samples; RPS17 and RPL32 for male adult tissue samples; RPS17 and RPL32 for various temperature treatments of nymphs; RPS17 and RPS25 for nymph samples under starvation stress; and RPS17 and RPL32 for all samples. Overall, we obtained a stable expression of reference genes under different conditions in E. furcellata, which provides a basis for future molecular studies on this organism.

4.
Insects ; 13(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005378

RESUMO

An understanding of physiological damage and population development caused by uncomfortable temperature plays an important role in pest control. In order to clarify the adaptability of different temperatures and physiological response mechanism of B. dorsalis, we focused on the adaptation ability of this pest to environmental stress from physiological and ecological viewpoints. In this study, we explored the relationship between population parameters and glucose, glycogen, trehalose, and trehalose-6-phosphate synthase responses to high and low temperatures. Compared with the control group, temperature stress delayed the development duration of all stages, and the survival rates and longevity decreased gradually as temperature decreased to 0 °C and increased to 36 °C. Furthermore, with low temperature decrease from 10 °C to 0 °C, the average fecundity per female increased at 10 °C but decreased later. Reproduction of the species was negatively affected during high-temperature stresses, reaching the lowest value at 36 °C. In addition to significantly affecting biological characteristics, temperature stress influenced physiological changes of B. dorsalis in cold and heat tolerance. When temperature deviated significantly from the norm, the levels of substances associated with temperature resistance were altered: glucose, trehalose, and TPS levels increased, but glycogen levels decreased. These results suggest that temperature stresses exert a detrimental effect on the populations' survival, but the metabolism of trehalose and glycogen may enhance the pest's temperature resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA