Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Adv Sci (Weinh) ; : e2310069, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728620

RESUMO

In point-of-care diagnostics, the continuous monitoring of sweat constituents provides a window into individual's physiological state. For species like horses, with abundant sweat glands, sweat composition can serve as an early health indicator. Considering the salience of such metrics in the domain of high-value animal breeding, a sophisticated wearable sensor patch tailored is introduced for the dynamic assessment of equine sweat, offering insights into pH, potassium ion (K+), and temperature profiles during episodes of heat stress and under normal physiological conditions. The device integrates a laser-engraved graphene (LEG) sensing electrode array, a non-invasive iontophoretic module for stimulated sweat secretion, an adaptable signal processing unit, and an embedded wireless communication framework. Profiting from an admirable Truth Table capable of logical evaluation, the integrated system enabled the early and timely assessment for heat stress, with high accuracy, stability, and reproducibility. The sensor patch has been calibrated to align with the unique dermal and physiological contours of equine anatomy, thereby augmenting its applicability in practical settings. This real-time analysis tool for equine perspiration stands to revolutionize personalized health management approaches for high-value animals, marking a significant stride in the integration of smart technologies within the agricultural sector.

2.
Small ; : e2402024, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766989

RESUMO

The rapidly changing climate is exacerbating the environmental stress that negatively impacts crop health and yield. Timely sensing of plant response to stress is beneficial to timely adjust planting conditions, promoting the healthy growth of plants, and improving plant productivity. Hydrogen peroxide (H2O2) is an important molecule of signal transduction in plants. However, the common methods for detecting H2O2  in plants are associated with certain drawbacks, such as long extraction time, cumbersome steps, dependence on large instruments, and difficulty in realizing in-field sensing. Therefore, it is urgent to establish more efficient detection methods to realize the rapid detection of H2O2 content in plants. In this research, poly (methyl vinyl ether-alt-maleic acid) (PMVE/MA) hydrogel microneedle (MN) patch for rapid extraction of leaf sap are prepared, and the extraction mechanism of PEG-crosslinked PMVE/MA hydrogel MN patch is studied. A method of rapid detection of H2O2 content in plants based on MN patch with optical detection technology is constructed. The hydrogel MN patch can be used for timely H2O2 analysis. This application enables new opportunities in plant engineering, and can be extended to the safety and health monitoring of other plants and animals.

3.
J Agric Food Chem ; 72(10): 5269-5282, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38439706

RESUMO

Dityrosine (Dityr) has been detected in commercial food as a product of protein oxidation and has been shown to pose a threat to human health. This study aims to investigate whether Dityr causes a decrease in lactic acid metabolism in the gastrocnemius muscle during endurance exercise. C57BL/6 mice were administered Dityr or saline by gavage for 13 weeks and underwent an endurance exercise test on a treadmill. Dityr caused a severe reduction in motion displacement and endurance time, along with a significant increase in lactic acid accumulation in the blood and gastrocnemius muscle in mice after exercise. Dityr induced significant mitochondrial defects in the gastrocnemius muscle of mice. Additionally, Dityr induced serious oxidative stress in the gastrocnemius muscle, accompanied by inflammation, which might be one of the causes of mitochondrial dysfunction. Moreover, significant apoptosis in the gastrocnemius muscle increased after exposure to Dityr. This study confirmed that Dityr induced oxidative stress in the gastrocnemius muscle, which further caused significant mitochondrial damage in the gastrocnemius muscle cell, resulting in decreased capacity of lactic acid metabolism and finally affected performance in endurance exercise. This may be one of the possible mechanisms by which highly oxidized foods cause a decreased muscle energy metabolism.


Assuntos
Mitocôndrias , Músculo Esquelético , Tirosina/análogos & derivados , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo
4.
ACS Sens ; 9(1): 29-41, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38199966

RESUMO

Heart failure (HF) is a life-threatening syndrome. Timely and accurate bedside monitoring of the occurrence and progression of HF via measurements of multiple HF-related biomarkers remains a challenge. Here, we report a triple cascade quantum-strip (TCQS) sensing strategy for the rapid and selective multiplex-tracing of three clinically validated HF biomarkers (BNP/NT-proBNP/ST2) in serum. High selectivity to the three biomarkers is achieved by controlling the individual recognition ability of three target-specific quantum immunoprobes and tuning their simultaneous use to BNP/NT-proBNP/ST2 recognition without mutual interference, which allows the three biomarkers to be directly enriched from serum samples. Benefiting from the fast release-binding kinetics of target-bound immunoprobes on TCQS, recognizable fluorescent signals can be rapidly read out through combining with a self-designed smartphone-based portable reader. This rapid and simple profiling strategy results in good specificity and sensitivity with LODs of 0.097, 0.072, and 0.948 ng/mL for BNP, NT-proBNP, and ST2, respectively, which match the need of clinical applications. Real serum samples are tested with an accuracy of 92.86% for HF diagnosis, validating the capability of the smartphone-read TCQS for practical applications. In particular, the simultaneous detection of the TCQS sensing strategy for BNP/NT-proBNP/ST2 will facilitate the accurate monitoring of HF occurrence, risk stratification, progression, and prognosis as a powerful POCT tool.


Assuntos
Insuficiência Cardíaca , Proteína 1 Semelhante a Receptor de Interleucina-1 , Humanos , Insuficiência Cardíaca/diagnóstico , Peptídeo Natriurético Encefálico , Prognóstico , Biomarcadores , Limite de Detecção
5.
Exp Neurol ; 373: 114689, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199510

RESUMO

Extensive preclinical evidence demonstrates a causative link between insulin signaling dysfunction and the pathogenesis of Alzheimer's disease (AD), and diabetic drugs may represent a promising approach to fighting AD. However, it remains to be determined which antidiabetic drugs are more effective in preventing cognitive impairment. Thus, the present study investigated the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin on cognitive impairment in middle-aged mice by comparing it with the effect of metformin. We found that DPP-4 activity increased in the hippocampus of middle-aged mice, and DPP-4 was mainly expressed by microglia rather than astrocytes and oligodendrocytes. DPP-4 directly regulated M1/M2 microglia polarization following LPS or IL-4 stimulation, while DPP-4 inhibitor, linagliptin, suppressed M1-polarized activation and induced M2-polarized activation. Both linagliptin and metformin enhanced cognitive ability, increased hippocampal synaptic plasticity and neurogenesis, and decreased age-related oxidative stress and inflammation by regulating microglia polarization in the hippocampus of middle-aged mice. The combination of linagliptin and metformin showed a maximum protective effect compared to the individual drugs alone. Loss of macrophage inflammatory protein-1α (MIP-1α), a DPP-4 substrate, abrogated the cognitive protection and anti-inflammation effects of linagliptin. Therefore, the current investigation exhibits a potential utility for DPP-4 inhibition in attenuating microglia-mediated inflammation and preventing mild cognitive impairment (MCI) in middle-aged mice, and the effect was partly mediated by MIP-1α.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Inibidores da Dipeptidil Peptidase IV , Metformina , Camundongos , Animais , Linagliptina/farmacologia , Linagliptina/uso terapêutico , Quimiocina CCL3/farmacologia , Microglia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Inflamação
6.
J Nutr Biochem ; 125: 109569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185346

RESUMO

Spermidine exerts protective roles in obesity, while the mechanism of spermidine in adipose tissue thermogenesis remains unclear. The present study first investigated the effect of spermidine on cold-stimulation and ß3-adrenoceptor agonist-induced thermogenesis in lean and high-fat diet-induced obese mice. Next, the role of spermidine on glucose and lipid metabolism in different types of adipose tissue was determined. Here, we found that spermidine supplementation did not affect cold-stimulated thermogenesis in lean mice, while significantly promoting the activation of adipose tissue thermogenesis under cold stimulation and ß3-adrenergic receptor agonist treatment in obese mice. Spermidine treatment markedly enhanced glucose and lipid metabolism in adipose tissues, and these results were associated with the activated autophagy pathway. Moreover, spermidine up-regulated fibroblast growth factor 21 (FGF21) signaling and its downstream pathway, including PI3K/AKT and AMPK pathways in vivo and in vitro. Knockdown of Fgf21 or inhibition of PI3K/AKT and AMPK pathways in brown adipocytes abolished the thermogenesis-promoting effect of spermidine, suggesting that the effect of spermidine on adipose tissue thermogenesis might be regulated by FGF21 signaling via the PI3K/AKT and AMPK pathways. The present study provides new insight into the mechanism of spermidine on obesity and its metabolic complications, thereby laying a theoretical basis for the clinical application of spermidine.


Assuntos
Tecido Adiposo Marrom , Espermidina , Camundongos , Animais , Espermidina/farmacologia , Espermidina/metabolismo , Espermidina/uso terapêutico , Tecido Adiposo Marrom/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Obesos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Termogênese , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL
7.
Trends Plant Sci ; 29(2): 219-231, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38071111

RESUMO

Small molecules in plants - such as metabolites, phytohormones, reactive oxygen species (ROS), and inorganic ions - participate in the processes of plant growth and development, physiological metabolism, and stress response. Wearable electrochemical sensors, known for their fast response, high sensitivity, and minimal plant damage, serve as ideal tools for dynamically tracking these small molecules. Such sensors provide producers or agricultural researchers with noninvasive or minimally invasive means of obtaining plant signals. In this review we explore the applications of wearable electrochemical sensors in detecting plant small molecules, enabling scientific assessment of plant conditions, quantification of environmental stresses, and facilitation of plant health monitoring and disease prediction.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Desenvolvimento Vegetal , Agricultura
8.
Biosens Bioelectron ; 248: 115964, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160635

RESUMO

Real-time monitoring of glucose concentration changes in plants and access to plant physiological information timely are of great significance to the development of precision agriculture. Here, we innovatively present an electrochemical sensing device that combines microneedle sensors and 3D printing technology to achieve real-time monitoring of glucose in plants in a minimally invasive manner. The device consists of two components: the inner part features a highly efficient sensing interface based on platinum wire (MPt-Au-Nafion-GOx-Pu), while the outer part consists of polymer microneedles formed by 3D printing. Additionally, the polymer hollow microneedle features a slender tip diameter of only 300 µm, minimizing plant damage during the detection procedure. The device shows good detection performance, with a limit of detection (LOD) of 33.3 µM and a detection sensitivity of 17 nA/µM·cm2. It can detect glucose concentrations in the range of 100 µM to 100 mM, providing a unique solution for timely agronomic management of crops tool. By performing 12 h real-time monitoring and salt stress treat on tomato and aloe vera, the results verified the feasibility of integrated device applied to real-time glucose detection in plants.


Assuntos
Técnicas Biossensoriais , Glucose , Glicemia , Automonitorização da Glicemia , Agulhas , Técnicas Biossensoriais/métodos
9.
iScience ; 26(12): 107962, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38094245

RESUMO

Although three-dimensional (3D) tumor models feature more accurate responses to drugs, the Matrigel scaffold affects the drug diffusion effect. Obtaining accurate drug spatiotemporal response characteristics is of great significance in the drug screening domain. However, the conventional cell-based sensors are difficult to perform spatiotemporal dynamics impedance monitoring of 3D cells and evaluate the anti-cancer pharmacological effect. Here, we proposed a biosensing platform involving a vertical impedance electrode array (VIEA) chip and a multichannel detection system. The platform can dynamically record 3D cell impedance in the vertical direction, which is consistent with time- and location-dependent drug penetration, closely related to spatiotemporal cell viability under drug effects. The subtle changes of impedance signals in different locations induced by drug diffusion can be detected, which demonstrates its high performance in drug systematic evaluation. The universal and high-content 3D cell biosensing platform is believed to have promising potential in pharmacodynamics investigation and preclinical drug screening.

10.
Nanomicro Lett ; 16(1): 49, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087121

RESUMO

In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases. Currently, implantable electrochemical microsensors have emerged as a prominent area of research. These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration. They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner, characterized by their bloodless, painless features, and exceptional performance. The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts. This review commenced with a comprehensive discussion of the construction of microsensors, including the materials utilized and the methods employed for fabrication. Following this, we proceeded to explore the various implantation technologies employed for electrochemical microsensors. In addition, a comprehensive overview was provided of the various applications of implantable electrochemical microsensors, specifically in the monitoring of diseases and the investigation of disease mechanisms. Lastly, a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.

11.
Biol Pharm Bull ; 46(12): 1706-1713, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37778980

RESUMO

Inflammatory bowel disease (IBD) is a worldwide issue, and the increased incidence has brought a heavy burden to patients and society. Gut microbiota is involved in the pathogenesis of IBD, and targeting the microbiota, such as probiotics, has emerged as a potential therapy for the treatment of IBD. Here, the effect of Bifidobacterium animalis ssp. lactis LKM512 (LKM512), an anti-aging probiotic, on dextran sulfate sodium salt (DSS)-induced IBD in larval zebrafish was determined. Supplementation of LKM512 promoted the survival rate of the larvae, together with increased locomotor activities and body length. In addition, LKM512 treatment enhanced mucus secretion and alleviated intestinal injury, and these results were associated with the upregulation of mucin-related and downregulation of inflammatory markers. Moreover, LKM512 increased the diversity of the microbiota and ameliorated the dysbiosis by increasing the abundance of Bacteroidetes and Firmicutes and reducing the abundance of Proteobacteria. Specifically, the abundance of beneficial bacteria, including the short-chain fatty-acids (SCFAs)-producing genera Lachnospiraceae_NK4A136_group, Muribaculaceae, and Alloprevotella, was increased by LKM512, while the abundance of harmful genera, such as Pseudomonas, Halomonas, and Escherichia-Shigella, was reduced by LKM512. Consistent with these findings, the microbial functions related to metabolism were partly reversed by LKM512, and importantly, fermentation of short-chain fatty acids-related functions were enhanced by LKM512. Therefore, LKM512 might be one potential probiotic for the prevention and treatment of IBD, and further studies that clarify the mechanism of LKM512 would promote the application of LKM512.


Assuntos
Bifidobacterium animalis , Doenças Inflamatórias Intestinais , Microbiota , Animais , Humanos , Peixe-Zebra , Bifidobacterium/metabolismo , Fezes/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana
12.
Mol Nutr Food Res ; 67(22): e2300373, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37726250

RESUMO

SCOPE: Dityrosine is the main product of protein oxidation, which has been proved to be a threat to human health. This study aims to investigate whether dityrosine exacerbates insulin resistance by inducing gut flora disturbance and associated inflammatory responses. METHODS AND RESULTS: Mice fed with normal diet or high-fat diet (HFD) received daily gavage of dityrosine (320 µg kg-1 BW) or saline for consecutive 13 weeks. The effects of dityrosine on gut microbiota are verified by in vitro fermentation using fecal microbiota from db/m mice and db/db mice. As a result, dityrosine causes the insulin resistance in mice fed normal diet, and aggravates the effects of HFD on insulin sensitivity. Dityrosine increases the levels of lipopolysaccharide (LPS), lipopolysaccharide-binding protein (LBP), toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) but decreases levels of interleukin-10 (IL-10) in the plasma of CON and HFD-fed mice. The changes of gut flora composition caused by dityrosine are significantly correlated with the changes of inflammatory biomarkers. CONCLUSION: The effects of dityrosine on insulin resistance may be attributed to the reshaping of the gut microbiota composition and promoting the activity of the LPS/TLR4/NF-κB inflammatory pathway in HFD-induced obese individuals.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
13.
Cardiol Rev ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754679

RESUMO

Inflammation in patients with coronary artery disease (CAD) has been linked to adverse clinical outcomes. A useful biomarker for measuring inflammation levels, high-sensitivity C-reactive protein (hs-CRP) in the blood can be used to detect the presence of low-grade inflammation. This study sought to assess the predictive value of baseline hs-CRP levels for adverse clinical events in CAD patients undergoing percutaneous coronary intervention (PCI). To investigate this topic, a meta-analysis was performed. We conducted a systematic search of PubMed, Embase, and the Cochrane Library for original articles reporting the correlation between hs-CRP levels and adverse clinical events in CAD patients undergoing PCI. We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines and conducted a meta-analysis by extracting relevant data. Our pooled calculations yielded hazard ratios or odds ratios with 95% confidence intervals. A total of 28 studies comprising 60544 patients were included in this analysis. High baseline hs-CRP levels predicted increased risk for major adverse cardiac events (P = 0.037), major adverse cardiac and cerebrovascular events (P = 0.020), all-cause mortality (P = 0.001), cardiovascular mortality (P < 0.001), death and/or myocardial infarction (P = 0.017) in patients, as well as restenosis (P < 0.001). However, there was no association between elevated baseline hs-CRP levels and thrombosis. In conclusion, in CAD patients undergoing PCI, baseline hs-CRP levels are reliable predictors of major adverse cardiac events, major adverse cardiac and cerebrovascular events, all-cause mortality, cardiovascular mortality, death and/or myocardial infarction, and restenosis. Therefore, hs-CRP can effectively assist in prognosis determination for CAD patients undergoing PCI.

14.
Food Chem ; 429: 136822, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450994

RESUMO

Cyclodextrins, with their unparalleled attributes of eco-friendliness, natural abundance, versatile utility, and facile functionalization, make a paramount contribution to the field of molecular imprinting. Leveraging the unique properties of cyclodextrins in molecularly imprinted polymers synthesis has revolutionized the performance of molecularly imprinted polymers, resulting in enhanced adsorption selectivity, capacity, and rapid extraction of pesticides, while also circumventing conventional limitations. As the concern for food quality and safety continues to grow, the need for standard analytical methods to detect pesticides in food and environmental samples has become paramount. Cyclodextrins, being non-toxic and biodegradable, present an attractive option for greener reagents in imprinting polymers that can also ensure environmental safety post-application. This review provides a comprehensive summary of the significance of cyclodextrins in molecular imprinting for pesticide detection in food and environmental samples. The recent advancements in the synthesis and application of molecularly imprinted polymers using cyclodextrins have been critically analyzed. Furthermore, the current limitations have been meticulously examined, and potential opportunities for greenification with cyclodextrin applications in this field have been discussed. By harnessing the advantages of cyclodextrins in molecular imprinting, it is possible to develop highly selective and efficient methods for detecting pesticides in food and environmental samples while also addressing the challenges of sustainability and environmental impact.


Assuntos
Ciclodextrinas , Impressão Molecular , Praguicidas , Polímeros Molecularmente Impressos , Extração em Fase Sólida
15.
ACS Sens ; 8(6): 2197-2206, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37303111

RESUMO

Abnormal cardiac electrophysiological activities significantly contribute to the incidence of cardiovascular diseases. Therefore, it is crucial to recognize effective drugs, which require an accurate, stable, and sensitive platform. Although conventional extracellular recordings offer a non-invasive and label-free manner to monitor the electrophysiological state of cardiomyocytes, the misrepresented and low-quality extracellular action potentials are difficult to provide accurate and high-content information for drug screening. This study presents the development of a three-dimensional cardiomyocyte-nanobiosensing system that can specifically recognize drug subgroups. The nanopillar-based electrode is manufactured by template synthesis and standard microfabrication technology on a porous polyethylene terephthalate membrane. Based on the cardiomyocyte-nanopillar interface, high-quality intracellular action potentials can be recorded by the minimally invasive electroporation. We validate the performance of a cardiomyocyte-nanopillar-based intracellular electrophysiological biosensing platform by two subclasses of sodium channel blockers, quinidine and lidocaine. The recorded intracellular action potentials accurately reveal the subtle differences between these drugs. Our study indicates that high-content intracellular recordings utilizing nanopillar-based biosensing can provide a promising platform for the electrophysiological and pharmacological investigation of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Miócitos Cardíacos , Humanos , Lidocaína/farmacologia , Eletroporação
16.
Nano Lett ; 23(9): 4049-4057, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098848

RESUMO

Electroporation is a proven technique that can record action potential of cardiomyocytes and serve for biomolecular delivery. To ensure high cell viability, micro-nanodevices cooperating with low-voltage electroporation are frequently utilized in research, and the effectiveness of delivery for intracellular access is typically assessed using an optical imaging approach like flow cytometry. However, the efficiency of in situ biomedical studies is hampered by the intricacy of these analytical approaches. Here, we develop an integrated cardiomyocyte-based biosensing platform to effectively record action potential and evaluate the electroporation quality in terms of viability, delivery efficiency, and mortality. The ITO-MEA device of the platform possesses sensing/stimulating electrodes which combines with the self-developed system to achieve intracellular action potential recording and delivery by electroporation trigger. Moreover, the image acquisition processing system analyzes various parameters effectively to assess delivery performance. Therefore, this platform has the potential for drug delivery therapy and pathology research for cardiology.


Assuntos
Eletroporação , Miócitos Cardíacos , Terapia com Eletroporação , Eletrodos , Sobrevivência Celular
17.
Food Funct ; 14(2): 769-786, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36594412

RESUMO

1-Octacosanol (Octa) is reported to possess many physiological properties. However, its relative mechanism has not been illustrated yet. Herein, we aimed to investigate the effect of Octa on insulin resistance in mice fed with a high fat diet (HFD) and used an in vitro simulated gastrointestinal tract to analyze its digestive behavior. The effects of Octa on the gut microbiota were verified by in vitro fermentation using the mouse fecal microbiota. As a result, the Octa monomer was digested into shortened saturated and unsaturated fatty acids (C10-C24) in the simulated gastrointestinal tract. Octa improved the fasting blood glucose (FBG), insulin resistance (IR), plasma lipids, and inflammatory response in HFD-fed mice in a dose-dependent manner. This study also suggested that a high-dose of Octa effectively decreased the levels of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the plasma of HFD-fed mice. Octa improved the oxidative stress induced by a HFD and increased the expression of the Nrf2/ARE signaling pathway. Importantly, Octa reshaped gut microbiota through decreasing Firmicutes content and increasing Bacteroidota and Verrucomicrobiota contents at the phylum level, and the changes of intestinal flora structure caused by Octa were significantly correlated with the changes of inflammatory biomarkers. In conclusion, the effects of Octa on insulin resistance might be attributed to the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF-κB inflammatory pathway in HFD-induced obese individuals.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Camundongos , Animais , NF-kappa B/metabolismo , Dieta Hiperlipídica , Receptor 4 Toll-Like/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
18.
Cardiovasc Drugs Ther ; 37(5): 891-904, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543792

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC)-derived exosomes play significant roles in ameliorating cardiac damage after myocardial ischemia-reperfusion (I/R) injury. Long non-coding RNA alpha-2-macroglobulin antisense RNA 1 (Lnc A2M-AS1) was found that might protect against myocardial I/R. However, whether Lnc A2M-AS1 delivery via MSC-derived exosomes could also regulate myocardial I/R injury remains unknown. METHODS: Exosomes were isolated by ultracentrifugation, and qualified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Hypoxia/reoxygenation (H/R) treatment in human cardiomyocytes was used to mimic the process of myocardial I/R in vitro. The viability and apoptosis of cardiomyocytes were detected using cell counting kit-8, flow cytometry, and Western blot assays. The contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) were evaluated using corresponding commercial kits. The quantitative real-time polymerase chain reaction and Western blot were used to determine the expression levels of Lnc A2M-AS1, microRNA (miR)-556-5p, and X-linked inhibitor of apoptosis protein (XIAP). The binding interaction between miR-556-5p and Lnc A2M-AS1 or XIAP was confirmed by the dual-luciferase reporter, RIP and pull-down assays. RESULTS: Exosomes isolated from hMSCs (hMSCs-exo) attenuated H/R-induced apoptosis and oxidative stress in cardiomyocytes. Lnc A2M-AS1 was lowly expressed in AMI patients and H/R-induced cardiomyocytes. Besides, Lnc A2M-AS1 was detectable in hMSCs-exo, exosomes derived from Lnc A2M-AS1-transfected hMSCs weakened H/R-induced apoptosis and oxidative stress, and enhanced the protective action of hMSCs-exo on H/R-induced cardiomyocytes. Further mechanism analysis showed that Lnc A2M-AS1 acted as a sponge for miR-556-5p to increase XIAP expression level. Importantly, miR-556-5p overexpression or XIAP knockdown reversed the action of exosomal Lnc A2M-AS1 on H/R-induced cardiomyocytes. CONCLUSION: Lnc A2M-AS1 delivery via MSC-derived exosomes ameliorated H/R-induced cardiomyocyte apoptosis and oxidative stress via regulating miR-556-5p/XIAP, opening a new window into the pathogenesis of myocardial I/R injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Antissenso/metabolismo , Apoptose , Hipóxia , Estresse Oxidativo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Reperfusão , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , alfa-Macroglobulinas/metabolismo
19.
Cell Rep ; 41(8): 111693, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417851

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are crucial regulators in numerous biological processes. However, the functions and mechanisms of m6A-modified lincRNAs in neuronal development remain unclear. Here, we report an m6A-modified lincRNA, Dppa2 upstream binding RNA (Dubr), abundantly expressed at the early developmental stage of dorsal root ganglion (DRG) and cerebral cortex. Silencing Dubr impairs axon elongation of DRG neurons and axon projection and migration of cortical neurons, whereas lacking m6A modification of Dubr fully loses its functions. Mechanically, Dubr interacts with m6A-binding proteins, the YTHDF1/3 complex, through its m6A motifs to protect YTHDF1/3 from degradation via the proteasome pathway. Furthermore, Tau and Calmodulin are regulated by YTHDF1/3 and m6A-modified Dubr. Overexpression of YTHDF1/3 not only rescues the reduced Tau and Calmodulin but also restores axon elongation of DRG neurons by Dubr knockdown. This study uncovers a critical role of m6A-modified lincRNA in neuronal development by regulating the degradation of RNA-binding protein.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biossíntese de Proteínas , Calmodulina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neurônios/metabolismo
20.
Eur J Neurosci ; 56(11): 6055-6068, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36161391

RESUMO

Cerebral ischaemia/reperfusion (I/R) injury is caused by blood flow restoration after an ischaemic insult, and effective treatments targeting I/R injury are still insufficient. Oxidative stress plays a critical role in the pathogenesis of cerebral I/R injury. This study investigated whether vitamin D receptor (VDR) could inhibit oxidative stress caused by cerebral I/R injury and explored the detailed mechanism. VDR was highly expressed in brain tissues of mice with cerebral I/R injury. Pretreatment with the active vitamin D calcitriol and synthetic vitamin D analogue paricalcitol (PC) reduced autophagy and apoptosis, improved neurological deficits and decreased infarct size in mice after cerebral I/R. Calcitriol or PC upregulated VDR expression to prevent cerebral I/R injury by affecting oxidative stress. Silencing of VDR reversed the protective effects of calcitriol or PC on brain tissues in mice with cerebral I/R. The bioinformatics analysis revealed that VDR interacted with SMAD family member 3 (SMAD3). It was validated through the chromatin immunoprecipitation assay that SMAD3 can bind to the VDR promoter and VDR can bind to the SMAD3 promoter. Collectively, these findings provide evidence that reciprocal activation between SMAD3 and VDR transcription factors defines vitamin D-mediated oxidative stress to prevent cerebral I/R injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Camundongos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA