Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
2.
Adv Healthc Mater ; : e2304397, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684223

RESUMO

A zwitterionic injectable and degradable hydrogel based on hydrazide and aldehyde-functionalized [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide (DMAPS) precursor polymers that can address practical in vivo needs is reported. Zwitterion fusion interactions between the zwitterionic precursor polymers create a secondary physically crosslinked network to enable much more rapid gelation than previously reported with other synthetic polymers, facilitating rapid gelation at much lower polymer concentrations or degrees of functionalization than previously accessible in addition to promoting zero swelling and long-term degradation responses and significantly stiffer mechanics than are typically accessed with previously reported low-viscosity precursor gelation systems. The hydrogels maintain the highly anti-fouling properties of conventional zwitterionic hydrogels against proteins, mammalian cells, and bacteria while also promoting anti-fibrotic tissue responses in vivo. Furthermore, the use of the hydrogels for effective delivery and subsequent controlled release of viable cells with tunable profiles both in vitro and in vivo is demonstrated, including the delivery of myoblasts in a mouse skeletal muscle defect model for reducing the time between injury and functional mobility recovery. The combination of the injectability, degradability, and tissue compatibility achieved offers the potential to expand the utility of zwitterionic hydrogels in minimally invasive therapeutic applications.

3.
Water Res ; 255: 121503, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537488

RESUMO

With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.

4.
J Hazard Mater ; 470: 134139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555674

RESUMO

In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.


Assuntos
Biomassa , Carvão Vegetal , Ferro , Ácido Peracético , Poluentes Químicos da Água , Purificação da Água , Ácido Peracético/química , Carvão Vegetal/química , Ferro/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Nitrogênio/química , Naproxeno/química , Catálise , Descontaminação/métodos , Adsorção
5.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474463

RESUMO

Developing a green, low-carbon, and circular economic system is the key to achieving carbon neutrality. This study investigated the organics removal efficiency in a three-dimensional electrode reactor (3DER) constructed from repurposed industrial solid waste, i.e., Mn-loaded steel slag, as the catalytic particle electrodes (CPE). The CPE, a micron-grade material consisting primarily of transition metals, including Fe and Mn, exhibited excellent electric conductivity, catalytic ability, and recyclability. High rhodamine B (RhB) removal efficiency in the 3DER was observed through a physical modelling experiment. The optimal operating condition was determined through a single-factor experiment in which 5.0 g·L-1 CPE and 3 mM peroxymonosulfate (PMS) were added to a 200 mL solution of 10 mM RhB under a current intensity of 0.5 A and a 1.5 to 2.0 cm distance between the 2D electrodes. When the initial pH value of the simulated solution was 3 to 9, the RhB removal rate exceeded 96% after 20 min reaction. In addition, the main reactive oxidation species in the 3DER were determined. The results illustrated that HO• and SO4•- both existed, but that the contribution of SO4•- to RhB removal was much lower than that of HO• in the 3DER. In summary, this research provides information on the potential of the 3DER for removing refractory organics from water.

6.
Adv Sci (Weinh) ; 11(14): e2308115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308181

RESUMO

Circular RNAs (circRNAs) are a crucial yet relatively unexplored class of transcripts known for their tissue- and cell-type-specific expression patterns. Despite the advances in single-cell and spatial transcriptomics, these technologies face difficulties in effectively profiling circRNAs due to inherent limitations in circRNA sequencing efficiency. To address this gap, a deep learning model, CIRI-deep, is presented for comprehensive prediction of circRNA regulation on diverse types of RNA-seq data. CIRI-deep is trained on an extensive dataset of 25 million high-confidence circRNA regulation events and achieved high performances on both test and leave-out data, ensuring its accuracy in inferring differential events from RNA-seq data. It is demonstrated that CIRI-deep and its adapted version enable various circRNA analyses, including cluster- or region-specific circRNA detection, BSJ ratio map visualization, and trans and cis feature importance evaluation. Collectively, CIRI-deep's adaptability extends to all major types of RNA-seq datasets including single-cell and spatial transcriptomic data, which will undoubtedly broaden the horizons of circRNA research.


Assuntos
Aprendizado Profundo , RNA Circular , RNA Circular/genética , RNA/genética , Transcriptoma/genética , Perfilação da Expressão Gênica
7.
Iran J Public Health ; 52(8): 1720-1729, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37744530

RESUMO

Background: In order to explore new targets for the treatment of gastric cancer (GC), we investigated the regulatory mechanism of miR-934 in the malignant phenotype of gastric cancer. Methods: The miRNA and mRNA expressions were determined by RT-qPCR, and protein levels were quantified by western blotting assay. Malignancy of AGS cell line was evaluated by MTT, flow cytometry, wound healing and Transwell assays. The putative binding site between miR-934 and ZFP36 was validated using luciferase reporter assay. Immunohistochemistry (IHC) assay was used to visualize the ZFP36-positive cells in the xenograft sections. All experiments were conducted in General Surgery Laboratory of Nanjing Red Cross Hospital Jiangsu Province, China from June 2019 to June 2021. Results: GC tissues and cell lines showed notably higher levels of miR-934. Overexpression of miR-934 promoted cell viability, migration and invasion, while inhibited cell apoptosis of GC cells. ZFP36 was predicted and verified to be the target of miR-934 and low protein levels of ZFP36 were observed in GC tissues. The ZFP36 protein expressions were suppressed by miR-934 overexpression, while were facilitated by miR-934 inhibition. Furthermore, the carcinogenic functions of miR-934 were partially reversed after ZFP36 overexpression. The results of in vivo experiments further demonstrated that miR-934 promoted tumor growth and repressed the protein expression of ZFP36. Conclusion: miR-934 served as a tumor promoter in GC via targeting ZFP36, and ZFP36 overexpression could efficiently relieve malignant phenotypes caused by miR-934, which prompted an exploitable molecular target for GC treatment.

8.
Chemosphere ; 340: 139910, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611753

RESUMO

In order to refine the treatment of microalgae consortium (MC) for municipal wastewater (MWW) during the winter, this study investigated the effectiveness of tubular and aeration column photobioreactors (TPBR and APBR) in wastewater treatment plant (WWTP) during winter by two start-up modes: microalgae/microalgae-activated sludge (AS). The operation results showed that under 5.7-13.1 °C, TPBR enhanced the assimilation of N and P pollutant by microalgal accumulation, meeting the Chinese discharge standard within 24 h (NH4+-N, TP, and COD ≤8.0, 0.5, and 50 mg·L-1). The microbial community profiles were identified and showed that inoculating AS under low-temperature still promoted bacterial interspecific association, but influenced by the inhibition of microbial diversity by the homogeneous circulation of TPBR, the nitrogen transfer function of MC was lower than that of APBR at low temperatures, except nitrogen fixation (K02588), nitrosification (K10944, K10945, and K10946), assimilatory nitrate reduction (K00366), and ammonification (K01915 and K05601). And the intermittent aeration in the APBR was still beneficial in increasing microbial diversity, which was more beneficial for reducing COD through microbial collaboration. In the treatment, the cryotolerant MGPM were Delftia, Romboutsia, Rhizobiales, and Bacillus, and the cold stress-related genes that were highly up-regulated were defense signaling molecules (K03671 and K00384), cold shock protein gene (K03704), and cellular protector (K01784) were present in both PBRs. This study provided a reference for the feasibility of the low temperature treatment of MC with the different types of PBR, which improved the application of wastewater treatment in more climatic environments.


Assuntos
Microalgas , Microbiota , Fotobiorreatores , Temperatura
9.
Zhongguo Gu Shang ; 36(7): 628-34, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37475626

RESUMO

OBJECTIVE: To investigate the effect of different postures on direct anterior approach(DAA) total hip arthroplasty. METHODS: Total of 94 patients who underwent DAA total hip arthroplasty from July 2016 to June 2020 were retrospectively analyzed. They were divided into two groups according to different positions during the operation, including 45 cases in lateral position and 49 cases in supine position (with the aid of stent). The general data such as gender, affected limb, body mass index(BMI), incision length, operation time, intraoperative bleeding volume, drainage volume 24 hours after operation, hemoglobin difference before and after operation, first landing time after operation, postoperative hospitalization time, postoperative complications, visual analogue scale(VAS) at 1 day, 1, 2 weeks, 1, 3 and 6 months after operation, Harris score at 1, 2 weeks, 1, 3 and 6 months after operation were observed and compared between the two groups. RESULTS: Patients in both groups were followed up for 6 to 12 months with an average of (8.31±2.22) months. There was no significant difference between two groups in gender, affected limb, age, height, weight, body mass index(BMI), preoperative VAS score and preoperative Harris score(P>0.05). The incision length, operation time, intraoperative bleeding volume, 24-hour drainage volume, hemoglobin difference before and after operation, first time to the ground and postoperative hospitalization time of patients in supine position (assisted by stent) group were all better than those in lateral position group(P<0.05);There was no significant difference in the number of blood transfusions during and after operation(P=0.550). There was no significant difference in anteversion angle and abduction angle in the supine position(with the aid of stent) group during and after operation (P=0.825, P=0.066);There was significant difference in anteversion angle and abduction angle in the lateral position group during and after operation(P<0.05). VAS of patients in supine position (assisted by stent) group were lower than those in lateral position group at 1 day, 1, 2 weeks and 1 month after operation(P<0.05), and there was no statistical difference between two groups at 3 and 6 months after operation(P>0.05). Harris scores of patients in supine position(assisted by stent) group were higher than those in lateral position group at 1 week, 1 month and 3 months after operation(P<0.05), and there was no significant difference between two groups at 6 months after operation(P>0.05). CONCLUSION: Compared with the lateral position, the supine position DAA total hip arthroplasty has the advantages of small incision, short operation time, less bleeding, early landing time, short hospitalization time, and small intraoperative acetabular cup position judgment error. It has the advantage of fast postoperative recovery, but the recovery of hip joint function is the same after 6 months.


Assuntos
Artroplastia de Quadril , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Postura
10.
ACS Appl Mater Interfaces ; 15(15): 19414-19426, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37018595

RESUMO

Polymers that integrate multiple functions into one system broaden the application range of materials, but it remains a great challenge to obtain polymer materials with simultaneously high strength, high toughness, and high self-healing rate. In this work, we prepared waterborne polyurethane (WPU) elastomers using Schiff bases containing disulfide and acylhydrazone bonds (PD) as chain extenders. Acylhydrazone forming a hydrogen bond not only acts as a physical cross-linking point, which promotes the microphase separation of polyurethane to increase the thermal stability, tensile strength, and toughness of the elastomer, but also serves as a "clip" to integrate various dynamic bonds together to synergistically reduce the activation energy of the polymer chain movement and endow the molecular chain with faster fluidity. Therefore, WPU-PD exhibits excellent mechanical properties at room temperature, such as a tensile strength and a fracture energy of 25.91 MPa and 121.66 kJ m-2, respectively, and a high self-healing efficiency of 93.7% in a short time under moderate heating conditions. In addition, the photoluminescence property of WPU-PD enables us to track its self-healing process by monitoring change of the fluorescence intensity at the cracks, which helps to avoid the accumulation of cracks and improve the reliability of the elastomer. This self-healing polyurethane has a great potential application value in optical anticounterfeiting, flexible electronics devices, functional automobile protective films, and so on.

11.
J Hazard Mater ; 452: 131286, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001209

RESUMO

As a novel strategy, peracetic acid (PAA) based advanced oxidation processes (AOPs) are being used in micropollutant elimination due to their high oxidation and low toxicity. In this study, Co2Ca1Al1-LDO as a kind of layered double oxides (LDOs) was successfully synthesized, and it is the first time to apply Co2Ca1Al1-LDO for activating PAA. The Co2Ca1Al1-LDO/PAA system showed excellent removal efficiencies for various micropollutants with removal ratios ranging from 90.4% to 100% and k values from 0.087 min-1 to 0.298 min-1. In the degradation period, various reactive oxygen species (ROS) are involved in the system, while organic radicals (R-O•) with a high concentration of 5.52 × 10-13 M are the dominant ROS in the contaminants degradation process. Compared to other ROS, R-O• had the largest contribution ratio (more than 85%) to pollutant degradation. Further analysis demonstrated that C1, C2, C3, C4, C5, C6 and N11 concentrated on the aniline group of SMX are the main attack sites based on the density functional theory (DFT) results, which is consistent with the degradation products. The toxicity of contaminants was obviously reduced after removing in this system. Furthermore, Co2Ca1Al1-LDO showed good reusability and stability, and Co2Ca1Al1-LDO/PAA system had excellent removal ability in actual water bodies containing inorganic anions, showing good application potential. Importantly, this study explored the feasibility of applying LDO catalysts in PAA-based AOPs for micropollutants elimination, providing new insights for subsequent research.

12.
Bioresour Technol ; 374: 128733, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774984

RESUMO

Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.


Assuntos
Microalgas , Microbiota , Águas Residuárias , Esgotos/microbiologia , Fotobiorreatores , Biomassa
13.
Water Res ; 232: 119666, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731206

RESUMO

As an oxidant, peracetic acid (PAA) is gradually applied in advanced oxidation processes (AOPs) for pollutants degradation due to its high oxidation and low toxicity. In this study, the prepared Co2Fe1-LDH showed excellent PAA activation ability for efficient degradation of various pharmaceuticals with a removal efficiency ranging from 82.3% to 100%. Taking sulfamethoxazole (SMX) as a model pharmaceutical, it's found that organic radical (R-O•) with high concentration of 5.27 × 10-13 M is the dominant ROS responsible for contaminants degradation. Further analysis demonstrated that bimetallic synergistic effect between Co and Fe can improve electron transfer ability of Co2Fe1-LDH, resulting in the accelerated conversion of Co from +3 to +2 valence state with a high reaction rate (4.3 × 101-1.483 × 102 M-1 s-1) in this system. Density functional theory (DFT) reveals that C1, C3, C5 and N11 with higher ƒ0 and ƒ-values concentrated on aniline group of SMX are the main attack sites, which is consistent with the results of degradation products. Besides, Co2Fe1-LDH/PAA system can effectively reduce biological toxicity after reaction, due to lower biotoxicity of degradation products and the carbon sources provided by PAA. In application, Co2Fe1-LDH/PAA system was capable of resisting the influence of water matrix and effectively removing pollutants in actual hospital wastewater. Importantly, this study comprehensively evaluated the ability of Co2Fe1-LDH/PAA system to remove organics and improve the biodegradability of actual hospital wastewater, providing guidance for application of PAA activation system.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Águas Residuárias , Peróxido de Hidrogênio , Sulfametoxazol , Oxirredução , Preparações Farmacêuticas
14.
Environ Sci Pollut Res Int ; 30(16): 45643-45676, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36823463

RESUMO

Fracturing flowback fluid (FFF) including various kinds of organic pollutants that do harms to people and new treatments are urgently needed. Advanced oxidation processes (AOPs) are suitable methods in consideration with molecular weight, removal cost and efficiency. Here, we summarize the recent studies about AOP treatments towards organic pollutants and discuss the application prospects in treatment of FFF. Immobilization and loading methods of catalysts, evaluation method of degradation of FFF, and continuous treatment process flow are discussed in this review. In conclusion, further studies are urgently needed in aspects of catalyst loading methods, macromolecule organic evaluation methods, industrial process, and pathways of macromolecule organics' decomposition.


Assuntos
Poluentes Químicos da Água , Humanos , Oxirredução , Catálise
15.
Nanomaterials (Basel) ; 12(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36500839

RESUMO

In this article, chlorotrifluoroethylene (CTFE)-based fluorocarbon composite latexes and their coatings are successfully fabricated by an environmentally friendly preparation method based on a new multifunctional waterborne polyurethane (MFWPU) dispersion. It is worth noting that the MFWPU acts as the sole system stabilizer as well as microreactor and simultaneously endows the composite coating with excellent double self-healing performance and adhesion. Moreover, the introduction of a dynamic disulfide bond in the polyurethane dispersion entrusts the coating with excellent scratch self-healing performance. Simultaneously, carbon-carbon double bonds in the polyurethane dispersion increase the compatibility between the core polymer and shell polymer. The fluorine-containing chain segments can be distributed in the coating evenly during the self-assembly film-forming process of composite particles so that the original element composition of the worn coating surface can restore the original element composition after heating, and the coating presents a regeneration ability, which further and verifies the usefulness of the double self-healing model of the coating. Afterward, efficient recovery and durability, which are two contradictory properties of scratch self-healing polymers, are optimized to obtain a composite coating with excellent comprehensive performance. The research results regarding the composite system may provide a valuable reference for the structural design and application of waterborne fluorocarbon functional coatings in the future.

16.
Front Cardiovasc Med ; 9: 945142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093152

RESUMO

The ATP consumption in heart is very intensive to support muscle contraction and relaxation. Mitochondrion is the power plant of the cell. Mitochondrial dysfunction has long been believed as the primary mechanism responsible for the inability of energy generation and utilization in heart failure. In addition, emerging evidence has demonstrated that mitochondrial dysfunction also contributes to calcium dysregulation, oxidative stress, proteotoxic insults and cardiomyocyte death. These elements interact with each other to form a vicious circle in failing heart. The role of mitochondrial dysfunction in the pathogenesis of heart failure has attracted increasing attention. The complex signaling of mitochondrial quality control provides multiple targets for maintaining mitochondrial function. Design of therapeutic strategies targeting mitochondrial dysfunction holds promise for the prevention and treatment of heart failure.

17.
Front Chem ; 10: 960003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910742

RESUMO

This study constructed a three-dimensional electrochemical reactor (3DER) using meshed stainless steel sheets and titanic magnetite particles (TMP) to investigate bisphenol A (BPA) degradation through the synergistic action of electrical current and TMP. We examined some TMP characteristics, such as particle size, specific surface areas, X-ray diffraction, surface imaging, elemental constituents, and electrical resistivity. It was found that TMP was a micron-level material with excellent electrical conductivity, and it could be regarded as a magnetite-based material comprising Fe(II) and Fe(III). The single-factor experiment determined the optimal conditions for BPA removal in 3DER, specifically by introducing 200 ml of BPA-simulated wastewater (10 mg L-1) into 3DER. At the initial pH of 9.00, current and electrodes gap of 300 mA and 15 mm, respectively, and adding 1 ml of 0.5 M potassium peroxymonosulfate and 1 g TMP, > 98% of BPA was removed after 55 min of electrochemical reaction. In addition, liquid chromatography-mass spectrometry identified the intermediates formed during the BPA treatment, showing two possible pathways for BPA degradation. The final degradation intermediates were chain organics with simple molecular structures. This research provided an understanding of the potential application of 3DER for BPA removal in water.

18.
Zhongguo Gu Shang ; 35(7): 615-9, 2022 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-35859369

RESUMO

OBJECTIVE: To analyze the timing of artificial femoral head replacement in elderly patients with femoral intertrochanteric fracture after intramedullary nail failure. METHODS: From July 2013 to September 2019, 17 elderly patients with femoral intertrochanteric fracture after intramedullary nail fixation failure were treated with artificial femoral head replacement. According to the interval from diagnosis of internal fixation failure to pedestrian femoral head replacement, the patients were divided into early operation and delayed operation groups. Among them, there were 8 cases of early operation, 5 males and 3 females;the age ranged from 80 to 89 years old with an average of (84.88±2.79) years old;the interval was 1 to 7 days with an average of(4.13±1.73) d. There were 9 cases of delayed operation, 4 males and 5 females;the age ranged from 80 to 89 year old with an average of(84.22±3.03) years old;The interval was 15 to 30 with days an average of (25.56±4.36) d. The operation time, intraoperative blood loss, the first postoperative weight-bearing time, postoperative hospital stay, the number of complications and deaths were compared between two groups. Harris score was used to evaluate hip function at 1 and 12 months after operation. RESULTS: The incision healed well after operation. There was 1 case of urinary tract infection in the early operation group;in the delayed operation group, there were 2 cases of intermuscular venous thrombosis, 1 case of pulmonary infection, 3 cases of urinary tract infection and 1 case of prosthesis dislocation. All 17 patients were followed up for 12 to 16 months with an average of (14.76±1.86) months. There was no significant difference in operation time, intraoperative blood loss and the number of deaths between two groups(P>0.05). There were significant differences in the first weight-bearing time, postoperative hospital stay and the number of complications between two groups(P<0.05). One month after operation, there was significant difference in Harris score between two groups(P<0.05). There was no significant difference in Harris score between two groups 12 months after operation(P>0.05). CONCLUSION: After the failure of intramedullary nail fixation of femoral intertrochanteric fracture in elderly patients, there is no significant difference in mortality and final hip function between early operation and delayed operation. However, early pedestrian femoral head replacement can make patients go down to the ground earlier, shorten the length of hospital stay, effectively reduce the complication rate and restore hip function as soon as possible.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Fraturas do Quadril , Idoso , Idoso de 80 Anos ou mais , Perda Sanguínea Cirúrgica , Pinos Ortopédicos , Feminino , Cabeça do Fêmur , Fraturas do Quadril/cirurgia , Humanos , Masculino , Estudos Retrospectivos , Resultado do Tratamento
19.
Chemosphere ; 305: 135422, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35738409

RESUMO

The high concentration of fluoride and phosphate in phosphogypsum leachate is harmful to the environment and ecosystem. Thus, there is a need to develop feasible materials or technologies to remove both fluoride and phosphate in acidic phosphogypsum leachate. In this study, sulfoaluminate cement (SC) was used to simultaneously remove fluoride and phosphate in wastewater based on its moderate alkalinity and rich content of metal elements (Ca, Al and Fe, etc). The acidized sulfoaluminate cement (ASC) composite was prepared through modifying SC with hydrochloric acid, which can increase the specific surface areas of the raw SC, as well as the activity of the metal elements in SC. Compared with other coagulants, ASC showed excellent removal performance for fluoride and phosphate, such as higher removal efficiency, better effluent quality, and accelerated settling rate. The fluoride and phosphate removal performances of ASC herein were investigated at different dosages, pH values, coexisting substances, and initial concentrations. As a result, ASC exhibited wide pH adaptability and satisfactory selectivity for fluoride and phosphate. The possible removal mechanisms of fluoride and phosphate by ASC included chemisorption, ion exchange, and precipitation. The main end products associated with fluoride were fluorite (CaF2), aluminum fluoride (AlF3), and iron trifluoride (FeF3). The main final products amid phosphate removal, on the other hand, were brushite (CaHPO4·2H2O), aluminophosphate ((H3O)·AlP2O6(OH)2), silicocarnotite (Ca2SiO4·Ca3(PO4)2) and iron phosphate (Fe(H2PO4)3). More importantly, ASC can effectively treat the phosphogypsum leachate at a wide range of concentrations, and the concentrations of phosphate and fluoride in the effluents were lower than 0.5 mg P L-1 and 4 mg L-1, respectively. To sum up, ASC is a competitive candidate to treat wastewater with high fluoride and phosphate content, such as phosphogypsum leachate.


Assuntos
Fluoretos , Fosfatos , Sulfato de Cálcio , Ecossistema , Fluoretos/química , Ferro , Fósforo , Águas Residuárias
20.
J Mater Chem B ; 10(23): 4431-4441, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35593134

RESUMO

Gemini quaternary ammonium (GQA), a type of cationic surfactant, exhibits excellent micellization ability and acts as a cell internalization promoter to increase the permeability of the cell membrane. GQA is sensitive to ionic solutions, which disturb its stabilization and leads to the rapid degradation of its polymer micelles due to its unique hydrophilic N+ structure. However, the effect of negatively charged moieties in the polymer chains of GQA on its action in polymer micelles, typically with regard to its micellization and biological performance, remains unclear. In this work, a series of polyurethane micelles containing various ratios of oppositely charged moieties was prepared. We found that the interchain electrostatic interaction severely undermines the function of the GQA surfactant and hinders the self-assembly and stabilization of polyurethane micelles. Specifically, a hydrophilic corona with a longer length cannot completely overcome this effect. By regulating the ratio of oppositely charged moieties, micelles exhibited tunable biological properties, such as biocompatibility, cytotoxicity, cell internalization, and phagocytosis by macrophages. Based on our results, a moderate molecular weight of mPEG (Mn = 1900) and a slight positive surface potential (∼10 mV) are the best surface parameters for the comprehensive performance of the studied nanoplatforms. This study provides a further understanding of the electrostatic interaction effect on the properties of the cationic GQA, offering rational guidance for the design and fabrication of GQA polymer micelles.


Assuntos
Micelas , Poliuretanos , Polímeros/química , Poliuretanos/química , Compostos de Amônio Quaternário/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA