Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Stem Cell ; 30(10): 1382-1391.e5, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37673072

RESUMO

Radial glial (RG) development is essential for cerebral cortex growth and organization. In humans, the outer radial glia (oRG) subtype is expanded and gives rise to diverse neurons and glia. However, the mechanisms regulating oRG differentiation are unclear. oRG cells express leukemia-inhibitory factor (LIF) receptors during neurogenesis, and consistent with a role in stem cell self-renewal, LIF perturbation impacts oRG proliferation in cortical tissue and organoids. Surprisingly, LIF treatment also increases the production of inhibitory interneurons (INs) in cortical cultures. Comparative transcriptomic analysis identifies that the enhanced IN population resembles INs produced in the caudal ganglionic eminence. To evaluate whether INs could arise from oRGs, we isolated primary oRG cells and cultured them with LIF. We observed the production of INs from oRG cells and an increase in IN abundance following LIF treatment. Our observations suggest that LIF signaling regulates the capacity of oRG cells to generate INs.


Assuntos
Células Ependimogliais , Neurogênese , Humanos , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Córtex Cerebral , Interneurônios/fisiologia
2.
Nature ; 622(7982): 359-366, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758944

RESUMO

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Recém-Nascido , Gravidez , Movimento Celular/genética , Sistemas CRISPR-Cas/genética , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Organoides/citologia , Organoides/embriologia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Organoides/patologia , Retículo Endoplasmático/metabolismo , Prosencéfalo/citologia , Prosencéfalo/embriologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Transporte Ativo do Núcleo Celular
3.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102617

RESUMO

Calcium influx can be stimulated by various intra- and extracellular signals to set coordinated gene expression programs into motion. As such, the precise regulation of intracellular calcium represents a nexus between environmental cues and intrinsic genetic programs. Mounting genetic evidence points to a role for the deregulation of intracellular calcium signaling in neuropsychiatric disorders of developmental origin. These findings have prompted renewed enthusiasm for understanding the roles of calcium during normal and dysfunctional prenatal development. In this Review, we describe the fundamental mechanisms through which calcium is spatiotemporally regulated and directs early neurodevelopmental events. We also discuss unanswered questions about intracellular calcium regulation during the emergence of neurodevelopmental disease, and provide evidence that disruption of cell-specific calcium homeostasis and/or redeployment of developmental calcium signaling mechanisms may contribute to adult neurological disorders. We propose that understanding the normal developmental events that build the nervous system will rely on gaining insights into cell type-specific calcium signaling mechanisms. Such an understanding will enable therapeutic strategies targeting calcium-dependent mechanisms to mitigate disease.


Assuntos
Cálcio , Doenças do Sistema Nervoso , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Córtex Cerebral/metabolismo , Humanos
4.
Neuron ; 110(2): 195-208, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34847355

RESUMO

Recent genetic studies of neurodevelopmental disorders point to synaptic proteins and ion channels as key contributors to disease pathogenesis. Although many of these proteins, such as the L-type calcium channel Cav1.2 or the postsynaptic scaffolding protein SHANK3, have well-studied functions in mature neurons, new evidence indicates that they may subserve novel, distinct roles in immature cells as the nervous system is assembled in prenatal development. Emerging tools and technologies, including single-cell sequencing and human cellular models of disease, are illuminating differential isoform utilization, spatiotemporal expression, and subcellular localization of ion channels and synaptic proteins in the developing brain compared with the adult, providing new insights into the regulation of developmental processes. We propose that it is essential to consider the temporally distinct and cell-specific roles of these proteins during development and maturity in our framework for understanding neuropsychiatric disorders.


Assuntos
Canais de Cálcio Tipo L , Neurogênese , Canais de Cálcio Tipo L/metabolismo , Feminino , Humanos , Neurônios/fisiologia , Gravidez , Isoformas de Proteínas/metabolismo
5.
Genes Dev ; 35(5-6): 335-353, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602870

RESUMO

mSWI/SNF or BAF chromatin regulatory complexes are dosage-sensitive regulators of human neural development frequently mutated in autism spectrum disorders and intellectual disability. Cell cycle exit and differentiation of neural stem/progenitor cells is accompanied by BAF subunit switching to generate neuron-specific nBAF complexes. We manipulated the timing of BAF subunit exchange in vivo and found that early loss of the npBAF subunit BAF53a stalls the cell cycle to disrupt neurogenesis. Loss of BAF53a results in decreased chromatin accessibility at specific neural transcription factor binding sites, including the pioneer factors SOX2 and ASCL1, due to Polycomb accumulation. This results in repression of cell cycle genes, thereby blocking cell cycle progression and differentiation. Cell cycle block upon Baf53a deletion could be rescued by premature expression of the nBAF subunit BAF53b but not by other major drivers of proliferation or differentiation. WNT, EGF, bFGF, SOX2, c-MYC, or PAX6 all fail to maintain proliferation in the absence of BAF53a, highlighting a novel mechanism underlying neural progenitor cell cycle exit in the continued presence of extrinsic proliferative cues.


Assuntos
Actinas/metabolismo , Ciclo Celular/genética , Córtex Cerebelar/embriologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Actinas/genética , Animais , Sítios de Ligação/genética , Células Cultivadas , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos , Deleção de Genes , Genes cdc/genética , Camundongos , Neurogênese/genética , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/metabolismo
6.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868578

RESUMO

The syndromic autism spectrum disorder (ASD) Timothy syndrome (TS) is caused by a point mutation in the alternatively spliced exon 8A of the calcium channel Cav1.2. Using mouse brain and human induced pluripotent stem cells (iPSCs), we provide evidence that the TS mutation prevents a normal developmental switch in Cav1.2 exon utilization, resulting in persistent expression of gain-of-function mutant channels during neuronal differentiation. In iPSC models, the TS mutation reduces the abundance of SATB2-expressing cortical projection neurons, leading to excess CTIP2+ neurons. We show that expression of TS-Cav1.2 channels in the embryonic mouse cortex recapitulates these differentiation defects in a calcium-dependent manner and that in utero Cav1.2 gain-and-loss of function reciprocally regulates the abundance of these neuronal populations. Our findings support the idea that disruption of developmentally regulated calcium channel splicing patterns instructively alters differentiation in the developing cortex, providing important in vivo insights into the pathophysiology of a syndromic ASD.


Assuntos
Processamento Alternativo/fisiologia , Transtorno do Espectro Autista/metabolismo , Canais de Cálcio/metabolismo , Diferenciação Celular/fisiologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Cálcio , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Modelos Animais , Mutação , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Splicing de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sindactilia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Curr Biol ; 29(16): 2640-2651.e4, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31378605

RESUMO

In response to a changing sensory environment, sensory systems adjust their neural code for a number of purposes, including an enhanced sensitivity for novel stimuli, prediction of sensory features, and the maintenance of sensitivity. Retinal sensitization is a form of short-term plasticity that elevates local sensitivity following strong, local, visual stimulation and has been shown to create a prediction of the presence of a nearby localized object. The neural mechanism that generates this elevation in sensitivity remains unknown. Using simultaneous intracellular and multielectrode recording in the salamander retina, we show that a decrease in tonic amacrine transmission is necessary for and is correlated spatially and temporally with ganglion cell sensitization. Furthermore, introducing a decrease in amacrine transmission is sufficient to sensitize nearby ganglion cells. A computational model accounting for adaptive dynamics and nonlinear pathways confirms a decrease in steady inhibitory transmission can cause sensitization. Adaptation of inhibition enhances the sensitivity to the sensory feature conveyed by an inhibitory pathway, creating a prediction of future input.


Assuntos
Interneurônios/fisiologia , Inibição Neural , Retina/fisiologia , Vias Visuais/fisiologia , Adaptação Fisiológica , Ambystoma , Animais , Feminino , Larva , Masculino , Estimulação Luminosa
8.
Neuron ; 102(1): 143-158.e7, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30770253

RESUMO

In the developing human neocortex, progenitor cells generate diverse cell types prenatally. Progenitor cells and newborn neurons respond to signaling cues, including neurotransmitters. While single-cell RNA sequencing has revealed cellular diversity, physiological heterogeneity has yet to be mapped onto these developing and diverse cell types. By combining measurements of intracellular Ca2+ elevations in response to neurotransmitter receptor agonists and RNA sequencing of the same single cells, we show that Ca2+ responses are cell-type-specific and change dynamically with lineage progression. Physiological response properties predict molecular cell identity and additionally reveal diversity not captured by single-cell transcriptomics. We find that the serotonin receptor HTR2A selectively activates radial glia cells in the developing human, but not mouse, neocortex, and inhibiting HTR2A receptors in human radial glia disrupts the radial glial scaffold. We show highly specific neurotransmitter signaling during neurogenesis in the developing human neocortex and highlight evolutionarily divergent mechanisms of physiological signaling.


Assuntos
Cálcio/metabolismo , Células Ependimogliais/metabolismo , Neocórtex/embriologia , Neurogênese/genética , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem da Célula , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Camundongos , Neocórtex/citologia , Neocórtex/metabolismo , Neurogênese/fisiologia , Análise de Sequência de RNA , Serotonina/metabolismo , Análise de Célula Única
9.
Glia ; 66(11): 2324-2339, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30151840

RESUMO

To study the role of L-type voltage-gated Ca++ channels in oligodendrocyte development, we used a mouse model of Timothy syndrome (TS) in which a gain-of-function mutation in the α1 subunit of the L-type Ca++ channel Cav1.2 gives rise to an autism spectrum disorder (ASD). Oligodendrocyte progenitor cells (OPCs) isolated from the cortex of TS mice showed greater L-type Ca++ influx and displayed characteristics suggestive of advanced maturation compared to control OPCs, including a more complex morphology and higher levels of myelin protein expression. Consistent with this, expression of Cav1.2 channels bearing the TS mutation in wild-type OPCs triggered process formation and promoted oligodendrocyte-neuron interaction via the activation of Ca++ /calmodulin-dependent protein kinase II. To ascertain whether accelerated OPC maturation correlated with functional enhancements, we examined myelination in the TS brain at different postnatal time points. The expression of myelin proteins was significantly higher in the corpus callosum, cortex and striatum of TS animals, and immunohistochemical analysis for oligodendrocyte stage-specific markers revealed an increase in the density of myelinating oligodendrocytes in several areas of the TS brain. Along the same line, electron microscopy studies in the corpus callosum of TS animals showed significant increases both in the percentage of myelinated axons and in the thickness of myelin sheaths. In summary, these data indicate that OPC development and oligodendrocyte myelination is enhanced in the brain of TS mice, and suggest that this mouse model of a syndromic ASD is a useful tool to explore the role of L-type Ca++ channels in myelination.


Assuntos
Transtorno Autístico/complicações , Transtorno Autístico/patologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Síndrome do QT Longo/complicações , Síndrome do QT Longo/patologia , Proteínas da Mielina/metabolismo , Oligodendroglia/fisiologia , Sindactilia/complicações , Sindactilia/patologia , Animais , Animais Recém-Nascidos , Transtorno Autístico/genética , Proteínas Relacionadas à Autofagia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Síndrome do QT Longo/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Oligodendroglia/patologia , Oligodendroglia/ultraestrutura , Potássio/farmacologia , Sindactilia/genética
10.
Nature ; 545(7652): 54-59, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445465

RESUMO

The development of the nervous system involves a coordinated succession of events including the migration of GABAergic (γ-aminobutyric-acid-releasing) neurons from ventral to dorsal forebrain and their integration into cortical circuits. However, these interregional interactions have not yet been modelled with human cells. Here we generate three-dimensional spheroids from human pluripotent stem cells that resemble either the dorsal or ventral forebrain and contain cortical glutamatergic or GABAergic neurons. These subdomain-specific forebrain spheroids can be assembled in vitro to recapitulate the saltatory migration of interneurons observed in the fetal forebrain. Using this system, we find that in Timothy syndrome-a neurodevelopmental disorder that is caused by mutations in the CaV1.2 calcium channel-interneurons display abnormal migratory saltations. We also show that after migration, interneurons functionally integrate with glutamatergic neurons to form a microphysiological system. We anticipate that this approach will be useful for studying neural development and disease, and for deriving spheroids that resemble other brain regions to assemble circuits in vitro.


Assuntos
Neurônios/citologia , Prosencéfalo/citologia , Prosencéfalo/crescimento & desenvolvimento , Esferoides Celulares/citologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Linhagem Celular , Movimento Celular , Células Cultivadas , Feminino , Neurônios GABAérgicos/citologia , Ácido Glutâmico/metabolismo , Humanos , Interneurônios/citologia , Interneurônios/patologia , Síndrome do QT Longo/genética , Síndrome do QT Longo/patologia , Masculino , Modelos Biológicos , Neurogênese , Neurônios/patologia , Células-Tronco Pluripotentes/citologia , Prosencéfalo/anatomia & histologia , Sinapses/fisiologia , Sindactilia/genética , Sindactilia/patologia
11.
Cereb Cortex ; 27(2): 1686-1699, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830346

RESUMO

Although many genes that specify neocortical projection neuron subtypes have been identified, the downstream effectors that control differentiation of those subtypes remain largely unknown. Here, we demonstrate that the LIM domain-binding proteins Ldb1 and Ldb2 exhibit dynamic and inversely correlated expression patterns during cerebral cortical development. Ldb1-deficient brains display severe defects in proliferation and changes in regionalization, phenotypes resembling those of Lhx mutants. Ldb2-deficient brains, on the other hand, exhibit striking phenotypes affecting layer 5 pyramidal neurons: Immature neurons have an impaired capacity to segregate into mature callosal and subcerebral projection neurons. The analysis of Ldb2 single-mutant mice reveals a compensatory role of Ldb1 for Ldb2 during corticospinal motor neuron (CSMN) differentiation. Animals lacking both Ldb1 and Ldb2 uncover the requirement for Ldb2 during CSMN differentiation, manifested as incomplete CSMN differentiation, and ultimately leading to a failure of the corticospinal tract.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/deficiência , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas com Domínio LIM/deficiência , Neurônios Motores/metabolismo , Tratos Piramidais/metabolismo , Fatores de Transcrição/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular/fisiologia , Camundongos Transgênicos , Neurogênese/fisiologia , Fatores de Transcrição/metabolismo
12.
Annu Rev Neurosci ; 37: 479-501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002278

RESUMO

Recent advances in cell reprogramming enable investigators to generate pluripotent stem cells from somatic cells. These induced pluripotent cells can subsequently be differentiated into any cell type, making it possible for the first time to obtain functional human neurons in the lab from control subjects and patients with psychiatric disorders. In this review, we survey the progress made in generating various neuronal subtypes in vitro, with special emphasis on the characterization of these neurons and the identification of unique features of human brain development in a dish. We also discuss efforts to uncover neuronal phenotypes from patients with psychiatric disease and prospects for the use of this platform for drug development.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Transtornos Mentais/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Neurogênese/fisiologia , Neurônios/citologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Transtornos Mentais/patologia , Doenças do Sistema Nervoso/patologia , Neurônios/patologia
13.
Cell Rep ; 7(4): 1077-1092, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24794428

RESUMO

A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11(+/-)). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2(+)) and fewer dopamine-sensitive (Drd1(+)) neurons in deep layers of cortex. Electrophysiological recordings of Drd2(+) MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11(+/-) mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11(+/-) mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.


Assuntos
Transtorno Autístico/genética , Gânglios da Base/anormalidades , Deleção Cromossômica , Transtornos Cromossômicos/genética , Modelos Animais de Doenças , Deficiência Intelectual/genética , Transtornos Mentais/genética , Animais , Gânglios da Base/patologia , Cromossomos Humanos Par 16/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Genes Dev ; 27(11): 1217-22, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23752588

RESUMO

The signals regulating stem cell activation during tissue regeneration remain poorly understood. We investigated the baldness associated with mutations in the voltage-gated calcium channel (VGCC) Cav1.2 underlying Timothy syndrome (TS). While hair follicle stem cells express Cav1.2, they lack detectable voltage-dependent calcium currents. Cav1.2(TS) acts in a dominant-negative manner to markedly delay anagen, while L-type channel blockers act through Cav1.2 to induce anagen and overcome the TS phenotype. Cav1.2 regulates production of the bulge-derived BMP inhibitor follistatin-like1 (Fstl1), derepressing stem cell quiescence. Our findings show how channels act in nonexcitable tissues to regulate stem cells and may lead to novel therapeutics for tissue regeneration.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Folículo Piloso/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Transtorno Autístico , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/efeitos dos fármacos , Proteínas Relacionadas à Folistatina/biossíntese , Proteínas Relacionadas à Folistatina/metabolismo , Síndrome do QT Longo/metabolismo , Camundongos , Células-Tronco/efeitos dos fármacos , Sindactilia/metabolismo
15.
PLoS One ; 8(4): e60526, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613729

RESUMO

The C-terminus of the voltage-gated calcium channel Cav1.2 encodes a transcription factor, the calcium channel associated transcriptional regulator (CCAT), that regulates neurite extension and inhibits Cav1.2 expression. The mechanisms by which CCAT is generated in neurons and myocytes are poorly understood. Here we show that CCAT is produced by activation of a cryptic promoter in exon 46 of CACNA1C, the gene that encodes CaV1.2. Expression of CCAT is independent of Cav1.2 expression in neuroblastoma cells, in mice, and in human neurons derived from induced pluripotent stem cells (iPSCs), providing strong evidence that CCAT is not generated by cleavage of CaV1.2. Analysis of the transcriptional start sites in CACNA1C and immune-blotting for channel proteins indicate that multiple proteins are generated from the 3' end of the CACNA1C gene. This study provides new insights into the regulation of CACNA1C, and provides an example of how exonic promoters contribute to the complexity of mammalian genomes.


Assuntos
Canais de Cálcio Tipo L/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Animais , Northern Blotting , Western Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Éxons/genética , Humanos , Imunoprecipitação , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
16.
Neuron ; 71(4): 632-9, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21867880

RESUMO

Neural circuits consist of highly precise connections among specific types of neurons that serve a common functional goal. How neurons distinguish among different synaptic targets to form functionally precise circuits remains largely unknown. Here, we show that during development, the adhesion molecule cadherin-6 (Cdh6) is expressed by a subset of retinal ganglion cells (RGCs) and also by their targets in the brain. All of the Cdh6-expressing retinorecipient nuclei mediate non-image-forming visual functions. A screen of mice expressing GFP in specific subsets of RGCs revealed that Cdh3-RGCs which also express Cdh6 selectively innervate Cdh6-expressing retinorecipient targets. Moreover, in Cdh6-deficient mice, the axons of Cdh3-RGCs fail to properly innervate their targets and instead project to other visual nuclei. These findings provide functional evidence that classical cadherins promote mammalian CNS circuit development by ensuring that axons of specific cell types connect to their appropriate synaptic targets.


Assuntos
Axônios/fisiologia , Caderinas/metabolismo , Rede Nervosa/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia , Animais , Axônios/ultraestrutura , Caderinas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Knockout , Rede Nervosa/anatomia & histologia , Células Ganglionares da Retina/citologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia
17.
Stem Cells ; 28(6): 1019-29, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20506127

RESUMO

Glioblastoma multiforme (GBM) is a highly heterogeneous malignant tumor. Recent data suggests the presence of a hierarchical organization within the GBM cell population that involves cancer cells with stem-like behavior, capable of repopulating the tumor and contributing to its resistance to therapy. Tumor stem cells are thought to reside within a vascular niche that provides structural and functional support. However, most GBM studies involve isolated tumor cells grown under various culture conditions. Here, we use a novel three-dimensional organotypic "explant" system of surgical GBM specimens that preserves cytoarchitecture and tumor stroma along with tumor cells. Notch inhibition in explants results in decreased proliferation and self-renewal of tumor cells but is also associated with a decrease in endothelial cells. When endothelial cells are selectively eliminated from the explants via a toxin conjugate, we also observed a decrease in self-renewal of tumor stem cells. These findings support a critical role for tumor endothelial cells in GBM stem cell maintenance, mediated at least in part by Notch signaling. The explant system further highlighted differences in the response to radiation between explants and isolated tumor neurospheres. Combination treatment with Notch blockade and radiation resulted in a substantial decrease in proliferation and in self-renewal in tumor explants while radiation alone was less effective. This data suggests that the Notch pathway plays a critical role in linking angiogenesis and cancer stem cell self-renewal and is thus a potential therapeutic target. Three-dimensional explant systems provide a novel approach for the study of tumor and microenvironment interactions.


Assuntos
Separação Celular/métodos , Células Endoteliais/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos/métodos , Apoptose , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Endoteliais/citologia , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
18.
Nat Med ; 14(4): 379-81, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18376409

RESUMO

Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. 'Therapeutic cloning' is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response.


Assuntos
Células-Tronco Embrionárias/transplante , Transtornos Parkinsonianos/terapia , Animais , Comportamento Animal , Linhagem Celular , Clonagem de Organismos , Dopamina/metabolismo , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/transplante , Técnicas de Transferência Nuclear , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/psicologia , Transplante Autólogo , Transplante Homólogo
19.
Genes Dev ; 22(2): 152-65, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18198334

RESUMO

Neural stem cells (NSCs) yield both neuronal and glial progeny, but their differentiation potential toward multiple region-specific neuron types remains remarkably poor. In contrast, embryonic stem cell (ESC) progeny readily yield region-specific neuronal fates in response to appropriate developmental signals. Here we demonstrate prospective and clonal isolation of neural rosette cells (termed R-NSCs), a novel NSC type with broad differentiation potential toward CNS and PNS fates and capable of in vivo engraftment. R-NSCs can be derived from human and mouse ESCs or from neural plate stage embryos. While R-NSCs express markers classically associated with NSC fate, we identified a set of genes that specifically mark the R-NSC state. Maintenance of R-NSCs is promoted by activation of SHH and Notch pathways. In the absence of these signals, R-NSCs rapidly lose rosette organization and progress to a more restricted NSC stage. We propose that R-NSCs represent the first characterized NSC stage capable of responding to patterning cues that direct differentiation toward region-specific neuronal fates. In addition, the R-NSC-specific genetic markers presented here offer new tools for harnessing the differentiation potential of human ESCs.


Assuntos
Células-Tronco Embrionárias/fisiologia , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Proteínas Hedgehog/fisiologia , Humanos , Camundongos , Placa Neural/citologia , Células Neuroepiteliais/fisiologia , Receptores Notch/fisiologia , Transdução de Sinais
20.
Nat Biotechnol ; 25(12): 1468-75, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18037878

RESUMO

Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Crista Neural/citologia , Crista Neural/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Engenharia Tecidual/métodos , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Embrião de Galinha , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA