Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS One ; 19(8): e0307248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39172989

RESUMO

In the current study, systems biology approach was applied to get a deep insight regarding the regulatory mechanisms of Chromochloris zofingiensis under overall stress conditions. Meta-analysis was performed using p-values combination of differentially expressed genes. To identify the informative models related to stress conditions, two distinct weighted gene co-expression networks were constructed and preservation analyses were performed using medianRankand Zsummary algorithms. Moreover, functional enrichment analysis of non-preserved modules was performed to shed light on the biological performance of underlying genes in the non-preserved modules. In the next step, the gene regulatory networks between top hub genes of non-preserved modules and transcription factors were inferred using ensemble of trees algorithm. Results showed that the power of beta = 7 was the best soft-thresholding value to ensure a scale-free network, leading to the determination of 12 co-expression modules with an average size of 128 genes. Preservation analysis showed that the connectivity pattern of the six modules including the blue, black, yellow, pink, greenyellow, and turquoise changed during stress condition which defined as non-preserved modules. Examples of enriched pathways in non-preserved modules were Oxidative phosphorylation", "Vitamin B6 metabolism", and "Arachidonic acid metabolism". Constructed regulatory network between identified TFs and top hub genes of non-preserved module such as Cz06g10250, Cz03g12130 showed that some specific TFs such as C3H and SQUAMOSA promoter binding protein (SBP) specifically regulates the specific hubs. The current findings add substantially to our understanding of the stress responsive underlying mechanism of C. zofingiensis for future studies and metabolite production programs.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Microalgas , Estresse Fisiológico , Estresse Fisiológico/genética , Microalgas/genética , Microalgas/metabolismo , Transcriptoma , Clorofíceas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Algoritmos
2.
Virus Res ; 349: 199450, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39151562

RESUMO

Metagenomics has been greatly accelerated by the development of next-generation sequencing (NGS) technologies, which allow scientists to discover and describe novel microorganisms without the need for conventional culture techniques. Examining integrative bioinformatics methods used in viral interaction research, this study highlights metagenomic data from various contexts. Accurate viral identification depends on high-purity genetic material extraction, appropriate NGS platform selection, and sophisticated bioinformatics tools like VirPipe and VirFinder. The efficiency and precision of metagenomic analysis are further improved with the advent of AI-based techniques. The diversity and dynamics of viral communities are demonstrated by case studies from a variety of environments, emphasizing the seasonal and geographical variations that influence viral populations. In addition to speeding up the discovery of new viruses, metagenomics offers thorough understanding of virus-host interactions and their ecological effects. This review provides a promising framework for comprehending the complexity of viral communities and their interactions with hosts, highlighting the transformational potential of metagenomics and bioinformatics in viral research.


Assuntos
Biologia Computacional , Mineração de Dados , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Metagenômica , Vírus , Metagenômica/métodos , Vírus/genética , Vírus/classificação , Biologia Computacional/métodos , Humanos , Animais
3.
Heliyon ; 10(15): e34760, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145000

RESUMO

We used gas chromatography-mass spectrometry (GC-MS) with an untargeted metabolomics approach to look at the metabolite profiles of traditional Iranian yogurts made from cow, goat, buffalo, and sheep milk. Results showed that different animal milks significantly influenced physicochemical properties and fatty acid (FA) composition, resulting in diverse metabolites. Over 80 % of all the fatty acids in the yogurt samples were saturated. The main fatty acids found were myristic acid (C14:0), palmitic acid (C16:0), and oleic acid + petroselenic acid (cis-9 C18:1 + cis-6 C18:1). In total, 36 metabolites, including esters, aldehydes, alcohols, and acids, were detected. Some important metabolites that changed yogurt profiles were 2-heptanone, methyl acetate, 2-propanone, butyl formate, and 4-methyl benzal. Associations between metabolite profiles and milk compositional traits were also observed, with statistical models showing a strong correlation between metabolite profiles and FA content. This study is the first to explore the impact of different animal sources and regions in Iran on the metabolome profiles of traditional yogurts. These results give us useful information about how metabolites differ between species and can be used to make new dairy products based on milk compositions and metabolites, which will help with future formulations of autochthonous starters.

4.
Biochem Biophys Rep ; 39: 101759, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39021674

RESUMO

Systems biology is an interdisciplinary field that aims to understand complex biological processes at the system level. The data, driven by high-throughput omics technologies, can be used to study the underpinning mechanisms of metabolite production under different conditions to harness this knowledge for the construction of regulatory networks, protein networks, metabolic models, and engineering of strains with enhanced target metabolite production in microalgae. In the current study, we comprehensively reviewed the recent progress in the application of these technologies for the characterization of carotenoid biosynthesis pathways in microalgae. Moreover, harnessing integrated approaches such as network analysis, meta-analysis, and machine learning models for deciphering the complexity of carotenoid biosynthesis pathways were comprehensively discussed.

5.
Front Microbiol ; 15: 1357156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39056004

RESUMO

The Acetobacter genus is primarily known for its significance in acetic acid production and its application in various industrial processes. This study aimed to shed light on the prevalence, diversity, and functional implications of CRISPR-Cas systems in the Acetobacter genus using a genome mining approach. The investigation analyzed the CRISPR-Cas architectures and components of 34 Acetobacter species, as well as the evolutionary strategies employed by these bacteria in response to phage invasion and foreign DNA. Furthermore, phylogenetic analysis based on CAS1 protein sequences was performed to gain insights into the evolutionary relationships among Acetobacter strains, with an emphasis on the potential of this protein for genotyping purposes. The results showed that 15 species had orphan, while20 species had complete CRISPR-Cas systems, resulting in an occurrence rate of 38% for complete systems in Acetobacter strains. The predicted complete CRISPR-Cas systems were categorized into I-C, I-F, I-E, and II-C subtypes, with subtype I-E being the most prevalent in Acetobacter. Additionally, spacer homology analysis revealed against such the dynamic interaction between Acetobacter strains and foreign invasive DNAs, emphasizing the pivotal role of CRISPR-Cas systems in defending against such invasions. Furthermore, the investigation of the secondary structures of CRISPR arrays revealed the conserved patterns within subtypes despite variations in repeat sequences. The exploration of protospacer adjacent motifs (PAMs) identified distinct recognition motifs in the flanking regions of protospacers. In conclusion, this research not only contributes to the growing body of knowledge on CRISPR-Cas systems but also establishes a foundation for future studies on the adaptive defense mechanisms of Acetobacter. The findings provide valuable insights into the intricate interplay between bacteria and phages, with implications for industrial applications and potential biotechnological advancements.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38446395

RESUMO

The aim of this study was to identify and isolate lactic acid bacteria (LAB) from indigenous sourdough and dairy samples in Iran, and to assess their probiotic properties in vitro. A total of 560 potential LAB isolates were examined, and 87 demonstrated high survival rates in artificial gastrointestinal fluids without hemolytic activity. The selected isolates exhibited significant auto-aggregation (18.35 to 79.42%) and co-aggregation abilities (20.16 to 71.26%). Additionally, the isolates displayed varying degrees of cell surface hydrophobicity (12.32 to 76.24%). Results indicated that 19 LAB isolates had cholesterol assimilation rates exceeding 30%. Moreover, forty strains tested negative for all twelve assessed pathogenic genes and exhibited good adhesion to human intestinal epithelial cells (13.47 to 49.12%). Furthermore, 24 isolates formed strong biofilms, 29 formed moderate biofilms, and 23 formed weak biofilms. Except for isolates ABRIIFBI-8, ABRIIFBI-16, ABRIIFBI-23, ABRIIFBI-43, ABRIIFBI-56, and ABRIIFBI-62, most isolates were capable of producing exopolysaccharides. Consequently, LAB strains naturally occurring in sourdough and traditional dairy samples were suggested as potential probiotic candidates for incorporation into functional foods.

7.
Biochem Biophys Rep ; 38: 101678, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38495412

RESUMO

Development of efficient analytical techniques is required for effective interpretation of biological data to take novel hypotheses and finding the critical predictive patterns. Machine Learning algorithms provide a novel opportunity for development of low-cost and practical solutions in biology. In this study, we proposed a new integrated analytical approach using supervised machine learning algorithms and microsatellites data of worldwide vitis populations. A total of 1378 wild (V. vinifera spp. sylvestris) and cultivated (V. vinifera spp. sativa) accessions of grapevine were investigated using 20 microsatellite markers. Data cleaning, feature selection, and supervised machine learning classification models vis, Naive Bayes, Support Vector Machine (SVM) and Tree Induction methods were implied to find most indicative and diagnostic alleles to represent wild/cultivated and originated geography of each population. Our combined approaches showed microsatellite markers with the highest differentiating capacity and proved efficiency for our pipeline of classification and prediction of vitis accessions. Moreover, our study proposed the best combination of markers for better distinguishing of populations, which can be exploited in future germplasm conservation and breeding programs.

8.
Funct Plant Biol ; 512024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38388445

RESUMO

Microalgae are photosynthetic organisms and a potential source of sustainable metabolite production. However, different stress conditions might affect the production of various metabolites. In this study, a meta-analysis of RNA-seq experiments in Dunaliella tertiolecta was evaluated to compare metabolite biosynthesis pathways in response to abiotic stress conditions such as high light, nitrogen deficiency and high salinity. Results showed downregulation of light reaction, photorespiration, tetrapyrrole and lipid-related pathways occurred under salt stress. Nitrogen deficiency mostly induced the microalgal responses of light reaction and photorespiration metabolism. Phosphoenol pyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase and glucose-6-phosphate-1-dehydrogenase (involved in central carbon metabolism) were commonly upregulated under salt, light and nitrogen stresses. Interestingly, the results indicated that the meta-genes (modules of genes strongly correlated) were located in a hub of stress-specific protein-protein interaction (PPI) network. Module enrichment of meta-genes PPI networks highlighted the cross-talk between photosynthesis, fatty acids, starch and sucrose metabolism under multiple stress conditions. Moreover, it was observed that the coordinated expression of the tetrapyrrole intermediated with meta-genes was involved in starch biosynthesis. Our results also showed that the pathways of vitamin B6 metabolism, methane metabolism, ribosome biogenesis and folate biosynthesis responded specifically to different stress factors. Since the results of this study revealed the main pathways underlying the abiotic stress, they might be applied in optimised metabolite production by the microalga Dunaliella in future studies. PRISMA check list was also included in the study.


Assuntos
Clorofíceas , Clorofíceas/genética , Clorofíceas/metabolismo , Estresse Fisiológico/genética , Amido/metabolismo , RNA-Seq , Nitrogênio/metabolismo , Tetrapirróis
9.
Biochem Biophys Rep ; 37: 101620, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155945

RESUMO

Cold stress, as an abiotic stress, is one of the most limiting factors which pose a great threat to the plant's productivity. To understand the transcriptional regulation and connectivity pattern of genes involved in barley cold stress responses, co-expression network analysis was performed based on the global transcriptome profiling. The microarray datasets related to cold stress treatments were retrieved from the Gene Expression Omnibus (GEO) and Array express databases. Four microarray datasets related to cold stress-responsive transcriptome in barley were included in our study. Gene co-expression analysis was constructed using WGCNA method. Module-Trait Relationships (MTR) analysis and hub genes determination and validation were carried out. Finally, transcription factor and kinase regulatory networks were Inferred using machine learning algorithm. The co-expression modules were determined using beta index = 10. In total 13 co-expressed modules were identified with an average size of 153 genes. Functional enrichment based on gene ontology (GO) showed that each of the stress related significant modules were enriched in different biological processes. Annotation of significant modules identifies some TFs and Kinases such as ethylene-responsive transcription factor 1-like, transcription factor PCL1-like, transcription factor MYC2, WRKY, serine/threonine-protein kinase PBL7, and receptor-like protein kinase At2g42960 were contributed in barley cold stress response. Our analysis highlighted the functional importance of ABA signaling pathway, ROS signaling, defensive and protective proteins, degrading protein, Ca2+ related signaling, ribosome-mediated translation and etc. in responding of barley to cold stress condition. The current findings add substantially to our understanding of the cold responsive underlying mechanism of barley which can serve in future studies and breeding programs.

10.
Front Microbiol ; 14: 1281307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125580

RESUMO

One of the most important adaptive immune systems in bacteria against phages is clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (CAS) genes. In this investigation, an approach based on genome mining was employed to characterize the CRISPR-Cas systems of Lacticaseibacillus rhamnosus strains. The analysis involved retrieving complete genome sequences of L. rhamnosus strains, and assessing the diversity, prevalence, and evolution of their CRISPR-Cas systems. Following this, an analysis of homology in spacer sequences from identified CRISPR arrays was carried out to investigate and characterize the range of target phages. The findings revealed that 106 strains possessed valid CRISPR-Cas structures (comprising CRISPR loci and Cas genes), constituting 45% of the examined L. rhamnosus strains. The diversity observed in the CRISPR-Cas systems indicated that all identified systems belonged to subtype II-A. Analyzing the homology of spacer sequences with phage and prophage genomes discovered that strains possessing only CRISPR-Cas subtype II targeted a broader spectrum of foreign phages. In summary, this study suggests that while there is not significant diversity among the CRISPR-Cas systems identified in L. rhamnosus strains, there exists notable variation in subtype II-A systems between L. rhamnosus and other lactobacilli. The diverse nature of these CRISPR-Cas systems underscores their natural activity and importance in adaptive immunity.

11.
Sci Rep ; 13(1): 19454, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945594

RESUMO

Circular RNAs (circRNA) are known to function as competing endogenous RNA (ceRNA) in various cancers by regulating microRNAs (miRNA). However, in colorectal cancer (CRC), the precise pathological role of circ000240/miRNA/mRNA remains indeterminate. The expression level of hsa_circ_000240 was evaluated using qRT-PCR in matching pairs of CRC tumor and adjacent normal tissue samples in our laboratory. Then, to determine whether hsa_circ_000240 acted as a ceRNA in CRC, the linked miRNAs and gene targets were retrieved. Topological analysis of candidate genes using a network approach identified the most critical hub genes and subnetworks related to CRC disease. Microarray and bulk RNA sequencing analyses were utilized to comprehensively evaluate the expression levels of both miRNA and mRNA in CRC. Single-cell RNA-seq analysis was also used to evaluate the significant overall survival (OS) genes at the cellular level. ATAC-seq data provided insights into candidate genes' accessible chromatin regions. The research uncovered a considerable upregulation of hsa_circ_000240 in CRC tissues. Three miRNAs interacted with the target circRNA. One thousand six hundred eighty intersected genes regulated by three miRNAs were further identified, and the relevant functionality of identified neighbor genes highlighted their relevance to cancer. The topological analysis of the constructed network has identified 33 hub genes with notably high expression in CRC. Among these genes, eight, including CHEK1, CDC6, FANCI, GINS2, MAD2L1, ORC1, RACGAP1, and SMC4, have demonstrated a significant impact on overall survival. The utilization of single-cell RNA sequencing unequivocally corroborated the augmented expression levels of CDC6 and ORC1 in individuals with CRC, alongside their noteworthy connection with the infiltration of immune cells. ATAC-seq analyses revealed altered accessibility regions in Chr2, 4, and 12 for CDC6 and ORC1 high-expression. Correlation analysis of CDC6 and ORC1 further highlighted the association of candidate gene expression with exhaustion markers such as CTLA4, CD247, TIGIT, and CD244. The candidate genes exhibit a positive correlation with chromatin remodeling and histone acetylation. These epigenetic modifications play a significant role in influencing the cancer progression following expression of CDC6 and ORC1 in CRC. Additionally, results showed that the methylation rate of the promoter region of CDC6 was elevated in CRC disease, confirming the functional importance of CDC6 and their interaction with hsa_circ_000240 and associated ceRNA in CRC. In conclusion, this study highlights hsa_circ_000240's role as a ceRNA in CRC. It opens new avenues for further dissection of CDC6, ORC1, and underlying novel epigenetics and immunotherapy targets for CRC therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , RNA Circular/genética , Multiômica , MicroRNAs/genética , RNA Mensageiro/genética , Neoplasias Colorretais/genética , Proteínas Cromossômicas não Histona
12.
Infect Genet Evol ; 114: 105500, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703922

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (CAS) genes make up bacteria's adaptive immune system. These genes protect bacteria from being eaten by bacteriophages. In this study, CRISPR-Cas systems were characterized using a genomic approach. For this purpose, genome sequences of Lactobacillus johnsonii strains were retrieved, and the diversity, occurrence, and evolution of the CRISPR-Cas systems were analyzed. Then, homology analyses of spacer sequences in identified CRISPR arrays were performed to analyze and characterize the diversity of target phages and plasmids. Finally, the evolutionary paths of spaceromes in each subtype of CRISPR arrays were performed using acquisition and deletion events surveyed under the selective pressure of foreign plasmids and phages. Results showed that 138 strains contain valid CRISPR-Cas structures (CRISPR loci together with the Cas genes) in their genomes, which accounted for about 17% of the L. johnsonii studied strains belonging to subtypes II-A, I-E, and I-C. Moreover, results indicated that some specific groups of plasmids were targeted with specific CRISPR array systems. Homology analysis of spacer sequences with phage genomes also revealed that spacers of strains that harbored only CRISPR-Cas subtype-II targeted a greater diversity of foreign phages. In conclusion, the current study indicates that there is great diversity between the CRISPR-Cas systems identified in L. johnsonii strains. Such diverse CRISPR-Cas systems indicate that these systems are naturally active and important in terms of adaptive immunity and evolutionary relationships.

14.
Sci Rep ; 12(1): 20144, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418457

RESUMO

Amyotrophic lateral sclerosis (ALS) is a genetically and phenotypically heterogeneous disease results in the loss of motor neurons. Mounting information points to involvement of other systems including cognitive impairment. However, neither the valid biomarker for diagnosis nor effective therapeutic intervention is available for ALS. The present study is aimed at identifying potentially genetic biomarker that improves the diagnosis and treatment of ALS patients based on the data of the Gene Expression Omnibus. We retrieved datasets and conducted a weighted gene co-expression network analysis (WGCNA) to identify ALS-related co-expression genes. Functional enrichment analysis was performed to determine the features and pathways of the main modules. We then constructed an ALS-related model using the least absolute shrinkage and selection operator (LASSO) regression analysis and verified the model by the receiver operating characteristic (ROC) curve. Besides we screened the non-preserved gene modules in FTD and ALS-mimic disorders to distinct ALS-related genes from disorders with overlapping genes and features. Altogether, 4198 common genes between datasets with the most variation were analyzed and 16 distinct modules were identified through WGCNA. Blue module had the most correlation with ALS and functionally enriched in pathways of neurodegeneration-multiple diseases', 'amyotrophic lateral sclerosis', and 'endocytosis' KEGG terms. Further, some of other modules related to ALS were enriched in 'autophagy' and 'amyotrophic lateral sclerosis'. The 30 top of hub genes were recruited to a LASSO regression model and 5 genes (BCLAF1, GNA13, ARL6IP5, ARGLU1, and YPEL5) were identified as potentially diagnostic ALS biomarkers with validating of the ROC curve and AUC value.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Redes Reguladoras de Genes , Neurônios Motores/metabolismo , Algoritmos , Marcadores Genéticos , Peptídeos e Proteínas de Sinalização Intracelular/genética
15.
Sci Rep ; 12(1): 11952, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831426

RESUMO

This research aimed to isolate lactic acid bacteria from the bowel of saltwater fish to assess their potential probiotic properties. Nineteen isolates of LAB including Lactiplantibacillus plantarum, Lactiplantibacillus pentosus, Lactobacillus acidophilus, Levilactobacillus brevis, Pediococcus pentosaceus, and Pediococcus acidilactici were recognized using molecular tools. All the isolates survived in the simulated conditions of the GI tract. Auto-aggregation ranged from 01.3 ± 0.5 to 82.6 ± 1.4% and hydrophobicity with toluene ranged from 3.7 ± 1.6 to 69.4 ± 1.3%, while the range of hydrophobicity with xylene was from 02.2 ± 1.6 to 56.4 ± 2.1%. All the isolates of lactobacilli, pediococci, enterococci, and lactococci indicated variable sensitivity and resistance towards clinical antibiotics. Non-neutralized cell free supernatant of isolates F12 and F15 showed antimicrobial activity against all the 8 evaluated enteric pathogens. Cluster analysis of identified potential probiotic bacteria based on heat-map and PCA methods also highlighted the priority of isolates F3, F7, F12, and F15 as bio-control agents in fishery industry. The findings of this study may essentially contribute to the understanding of the probiotic potential of LAB in saltwater fish, in order to access their probiotic characterization for use as biocontrol in fishery.


Assuntos
Lactobacillales , Probióticos , Algoritmos , Animais , Análise por Conglomerados , Lactobacillus
16.
Front Microbiol ; 13: 911706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722276

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their CRISPR-associated (Cas) genes are widely distributed in prokaryotes that provide an adaptive defense mechanism against foreign invasive DNA. There is relatively little knowledge about the CRISPR-Cas diversity and evolution in Lactobacillus brevis strains. Therefore, in this study, a genome-mining approach was employed to investigate the diversity and occurrence of the CRISPR-Cas system in 83 L. brevis strains. Moreover, trans-activating CRISPR RNA (tracrRNA) and protospacer adjacent motif (PAM) as pivotal elements for the successful targeting and inference of phages by the subtype II CRISPR-Cas systems were surveyed. Finally, evolutionary paths of L. brevis strains under selective pressure from foreign invasive DNA such as plasmids and phages of studied strains were surveyed using acquisition and deletion events analysis of spacers. A total of 127 confirmed CRISPRs were identified, which were distributed in 69 strains. Among strains with confirmed CRISPRs, 35 strains only contained one CRISPR locus, 23 strains contained two CRISPR loci, and 12 strains contained three to six CRISPR loci. L. brevis strains frequently harbor more than one CRISPR system. Analysis of confirmed CRISPR arrays showed that 31 out of 127 confirmed CRISPRs included Cas genes which were categorized as one of the II-A, II-C, and I-E subtypes. Analysis of subtype II-A spacers reflected divergent evolution for 18 strains into 16 unique groups. Additional analysis of spacer sequences also confirmed the implication of characterizing CRISPR-Cas systems in targeting of phages and plasmids. The current study highlighted the potential of utilizing CRISPR spacer polymorphism in genotyping lactobacillus strains. Moreover, it provides deep insights into the occurrence, diversity, and functional impacts of the CRISPR-Cas system in L. brevis strains.

17.
Sci Rep ; 12(1): 1373, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082326

RESUMO

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that in most cases occurs sporadic (sALS). The disease is not curable, and its pathogenesis mechanisms are not well understood yet. Given the intricacy of underlying molecular interactions and heterogeneity of ALS, the discovery of molecules contributing to disease onset and progression will open a new avenue for advancement in early diagnosis and therapeutic intervention. Here we conducted a meta-analysis of 12 circulating miRNA profiling studies using the robust rank aggregation (RRA) method, followed by enrichment analysis and experimental verification. We identified miR-451a and let-7f-5p as meta-signature miRNAs whose targets are involved in critical pathogenic pathways underlying ALS, including 'FoxO signaling pathway', 'MAPK signaling pathway', and 'apoptosis'. A systematic review of 7 circulating gene profiling studies elucidated that 241 genes up-regulated in sALS circulation with concomitant being targets of the meta-signature miRNAs. Protein-protein interaction (PPI) network analysis of the candidate targets using MCODE algorithm revealed the main subcluster is involved in multiple cascades eventually leads apoptosis, including 'positive regulation of neuron apoptosis. Besides, we validated the meta-analysis results using RT-qPCR. Indeed, relative expression analysis verified let-7f-5p and miR-338-3p as significantly down-regulated and up-regulated biomarkers in the plasma of sALS patients, respectively. Receiver operating characteristic (ROC) analysis also highlighted the let-7f-5p and miR-338-3p potential as robustness plasma biomarkers for diagnosis and potential therapeutic targets of sALS disease.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , MicroRNAs/sangue , MicroRNAs/genética , Transcriptoma/genética , Algoritmos , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/sangue , Regulação para Baixo/genética , Pesquisa Empírica , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mapas de Interação de Proteínas/genética , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Regulação para Cima/genética
18.
Anim Biotechnol ; 33(2): 223-233, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32633600

RESUMO

The expression of genes and their regulation during lactation in Ghezel sheep breed remains less understood. To explore the underlying molecular mechanism of the lactation process in the mammary gland, transcriptome profiles of Iranian fat-tailed Ghezel sheep breed milk at two stages, before (BF) and after peak (AF) stages of lactation were investigated. Functional impacts of differentially expressed genes (DEGs) between BF and AF stages were surveyed using Gene Ontology (GO) and Protein-Protein Interaction (PPI) network analysis. Totally, 75 DEGs were identified between BF and AF stages of lactation. The RNA-Seq results were validated by Q-RT-PCR. Gene ontology of DEGs mainly enriched in metabolic process and oxidative phosphorylation. PPI network analysis also highlighted the contribution of peroxisome proliferator-activated receptors (PPAR) signaling, oxidative phosphorylation and metabolic pathways in the lactation process. Intriguingly, the genes involved in fat metabolism dominantly down-regulated at AF stage. Our results provide new insight into transcriptional changes and add to growing body of knowledge on the lactation process in fat-tailed sheep breeds.


Assuntos
Glândulas Mamárias Animais , Transcriptoma , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Irã (Geográfico) , Lactação/genética , Glândulas Mamárias Animais/metabolismo , RNA/metabolismo , Ovinos/genética , Transcriptoma/genética
19.
Front Genet ; 12: 712306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691146

RESUMO

Background: Mastitis is the most prevalent disease in dairy cattle and one of the most significant bovine pathologies affecting milk production, animal health, and reproduction. In addition, mastitis is the most common, expensive, and contagious infection in the dairy industry. Methods: A meta-analysis of microarray and RNA-seq data was conducted to identify candidate genes and functional modules associated with mastitis disease. The results were then applied to systems biology analysis via weighted gene coexpression network analysis (WGCNA), Gene Ontology, enrichment analysis for the Kyoto Encyclopedia of Genes and Genomes (KEGG), and modeling using machine-learning algorithms. Results: Microarray and RNA-seq datasets were generated for 2,089 and 2,794 meta-genes, respectively. Between microarray and RNA-seq datasets, a total of 360 meta-genes were found that were significantly enriched as "peroxisome," "NOD-like receptor signaling pathway," "IL-17 signaling pathway," and "TNF signaling pathway" KEGG pathways. The turquoise module (n = 214 genes) and the brown module (n = 57 genes) were identified as critical functional modules associated with mastitis through WGCNA. PRDX5, RAB5C, ACTN4, SLC25A16, MAPK6, CD53, NCKAP1L, ARHGEF2, COL9A1, and PTPRC genes were detected as hub genes in identified functional modules. Finally, using attribute weighting and machine-learning methods, hub genes that are sufficiently informative in Escherichia coli mastitis were used to optimize predictive models. The constructed model proposed the optimal approach for the meta-genes and validated several high-ranked genes as biomarkers for E. coli mastitis using the decision tree (DT) method. Conclusion: The candidate genes and pathways proposed in this study may shed new light on the underlying molecular mechanisms of mastitis disease and suggest new approaches for diagnosing and treating E. coli mastitis in dairy cattle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA