Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Intensive Care Med Exp ; 11(1): 45, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460911

RESUMO

BACKGROUND: Preclinical sepsis models have been criticized for their inability to recapitulate human sepsis and suffer from methodological shortcomings that limit external validity and reproducibility. The National Preclinical Sepsis Platform (NPSP) is a consortium of basic science researchers, veterinarians, and stakeholders in Canada undertaking standardized multi-laboratory sepsis research to increase the efficacy and efficiency of bench-to-bedside translation. In this study, we aimed to develop and characterize a 72-h fecal-induced peritonitis (FIP) model of murine sepsis conducted in two independent laboratories. The experimental protocol was optimized by sequentially modifying dose of fecal slurry and timing of antibiotics in an iterative fashion, and then repeating the experimental series at site 1 and site 2. RESULTS: Escalating doses of fecal slurry (0.5-2.5 mg/g) resulted in increased disease severity, as assessed by the modified Murine Sepsis Score (MSS). However, the MSS was poorly associated with progression to death during the experiments, and mice were found dead without elevated MSS scores. Administration of early antibiotics within 4 h of inoculation rescued the animals from sepsis compared with late administration of antibiotics after 12 h, as evidenced by 100% survival and reduced bacterial load in peritoneum and blood in the early antibiotic group. Site 1 and site 2 had statistically significant differences in mortality (60% vs 88%; p < 0.05) for the same dose of fecal slurry (0.75 mg/g) and marked differences in body temperature between groups. CONCLUSIONS: We demonstrate a systematic approach to optimizing a 72-h FIP model of murine sepsis for use in multi-laboratory studies. Alterations to experimental conditions, such as dose of fecal slurry and timing of antibiotics, have clear impact on outcomes. Differences in mortality between sites despite rigorous standardization warrants further investigations to better understand inter-laboratory variation and methodological design in preclinical studies.

2.
Biomedicines ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203689

RESUMO

Sepsis is associated with circulatory dysfunction contributing to disturbed blood flow and organ injury. Decreased organ perfusion in sepsis is attributed, in part, to the loss of vasoregulatory mechanisms. Identifying which vascular beds are most susceptible to dysfunction is important for monitoring the recovery of organ function and guiding interventions. This study aimed to investigate the development of vascular dysfunction as sepsis progressed to septic shock. Anesthetized C57Bl/6 mice were instrumented with a fiberoptic pressure sensor in the carotid artery for blood pressure measurements. In subgroups of mice, regional blood flow measurements were taken by positioning a perivascular flow probe around either the left carotid, left renal, or superior mesenteric arteries. Hemodynamic parameters and their responsiveness to bolus doses of vasoactive drugs were recorded prior to and continuously after injection of fecal slurry (1.3 mg/g body weight) for 4 h. Fecal slurry-induced peritonitis reduced mean arterial pressure (62.7 ± 2.4 mmHg vs. 37.5 ± 3.2 mmHg in vehicle and septic mice, respectively), impaired cardiac function, and eventually reduced organ blood flow (71.9%, 66.8%, and 65.1% in the superior mesenteric, renal, and carotid arteries, respectively). The mesenteric vasculature exhibited dysregulation before the renal and carotid arteries, and this underlying dysfunction preceded the blood pressure decline and impaired organ blood flow.

3.
Placenta ; 119: 39-43, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124330

RESUMO

Atypical protein kinase-c (aPKC) isoforms are important regulators of polarity and stem cell differentiation. There are three isoforms of aPKC: aPKC-ι, aPKC-ζ, and PKM-ζ. Recently, aPKC-ι was shown to regulate human trophoblast stem cell (TSC) differentiation. Compensation by remaining isoforms when a single aPKC isoform is lost can occur, but the expression pattern of aPKC-ζ in placenta is unknown. Here we show that aPKC-ι, aPKC-ζ and a new isoform, aPKC-ζ III, are expressed in trophoblasts. Therefore, studies examining the role of aPKC isoforms that control for potential compensation between aPKC isoforms are necessary to understand aPKC-mediated regulation of TSC differentiation.


Assuntos
Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Trofoblastos/enzimologia , Animais , Humanos , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 10(1): 6926, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332768

RESUMO

Stressors during the fetal and postnatal period affect the growth and developmental trajectories of offspring, causing lasting effects on physiologic regulatory systems. Here, we tested whether reduced uterine artery blood flow in late pregnancy would alter body composition in the offspring, and whether feeding offspring a western diet (WD) would aggravate these programming effects. Pregnant rats underwent bilateral uterine artery ligation (BUAL) or sham surgery on gestational day (GD)18 (term = GD22). At weaning, offspring from each group received either a normal diet (ND) or a WD. BUAL surgery increased fetal loss and caused offspring growth restriction, albeit body weights were no longer different at weaning, suggesting postnatal catch-up growth. BUAL did not affect body weight gain, fat accumulation, or plasma lipid profile in adult male offspring. In contrast, while ND-fed females from BUAL group were smaller and leaner than their sham-littermates, WD consumption resulted in excess weight gain, fat accumulation, and visceral adiposity. Moreover, WD increased plasma triglycerides and cholesterol in the BUAL-treated female offspring without any effect on sham littermates. These results demonstrate that reduced uterine artery blood flow during late pregnancy in rodents can impact body composition in the offspring in a sex-dependent manner, and these effects may be exacerbated by postnatal chronic WD consumption.


Assuntos
Dieta Ocidental , Metabolismo dos Lipídeos , Artéria Uterina/patologia , Adipócitos/patologia , Animais , Animais Recém-Nascidos , Composição Corporal , Peso Corporal , Tamanho Celular , Feminino , Teste de Tolerância a Glucose , Ligadura , Lipídeos/sangue , Masculino , Obesidade Abdominal/sangue , Obesidade Abdominal/patologia , Tamanho do Órgão , Gravidez , Ratos Long-Evans
5.
Cardiovasc Res ; 116(1): 183-192, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715197

RESUMO

AIMS: Perinatal iron deficiency (ID) alters developmental trajectories of offspring, predisposing them to cardiovascular dysfunction in later life. The mechanisms underlying this long-term programming of renal function have not been defined. We hypothesized perinatal ID causes hypertension and alters kidney metabolic function and morphology in a sex-dependent manner in adult offspring. Furthermore, we hypothesized these effects are exacerbated by chronic consumption of a high salt diet. METHODS AND RESULTS: Pregnant Sprague Dawley rats were fed either an iron-restricted or replete diet prior to and throughout pregnancy. Adult offspring were fed normal or high salt diets for 6 weeks prior to experimentation at 6 months of age. Blood pressure (BP) was assessed via indwelling catheters in anaesthetized offspring; kidney mitochondrial function was assessed via high-resolution respirometry; reactive oxygen species and nitric oxide were quantified via fluorescence microscopy. Adult males, but not females, exhibited increased systolic BP due to ID (P = 0.01) and high salt intake (P = 0.02). In males, but not in females, medullary mitochondrial content was increased by high salt (P = 0.003), while succinate-dependent respiration was reduced by ID (P < 0.05). The combination of perinatal ID and high salt reduced complex IV activity in the cortex of males (P = 0.01). Perinatal ID increased cytosolic superoxide generation (P < 0.001) concomitant with reduced nitric oxide bioavailability (P < 0.001) in male offspring, while high salt increased mitochondrial superoxide in the medulla (P = 0.04) and cytosolic superoxide within the cortex (P = 0.01). Male offspring exhibited glomerular basement membrane thickening (P < 0.05), increased collagen deposition (P < 0.05), and glomerular hypertrophy (interaction, P = 0.02) due to both perinatal ID and high salt. Female offspring exhibited no alterations in mitochondrial function or morphology due to either high salt or ID. CONCLUSION: Perinatal ID causes long-term sex-dependent alterations in renal metabolic function and morphology, potentially contributing to hypertension and increased cardiovascular disease risk.


Assuntos
Deficiências de Ferro , Ferro da Dieta , Nefropatias/etiologia , Rim/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal , Sódio na Dieta , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Rim/patologia , Rim/fisiopatologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Estado Nutricional , Gravidez , Ratos Sprague-Dawley , Fatores Sexuais , Superóxidos/metabolismo , Fatores de Tempo
6.
J Physiol ; 597(18): 4715-4728, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368136

RESUMO

KEY POINTS: Perinatal iron deficiency causes changes in offspring mesenteric artery function in adulthood, particularly in males, which can be exacerbated by chronic intake of a high salt diet. Perinatal iron deficient male offspring exhibit enhanced conversion of big endothelin-1 to active endothelin-1, coinciding with decreased nitric oxide levels. Perinatal iron deficient male offspring have reduced nitric oxide-mediated endothelial-dependent vasodilatation coincident with increased vascular superoxide levels following consumption of a high salt diet. Perinatal iron deficiency has no apparent effects on vascular function in female offspring, even when fed a high salt diet. These results help us better understand underlying vascular mechanisms contributing to increased cardiovascular risk from perinatal stressors such as iron deficiency. ABSTRACT: Pre- and immediate postnatal stressors, such as iron deficiency, can alter developmental trajectories and predispose offspring to long-term cardiovascular dysfunction. Here, we investigated the impact of perinatal iron deficiency on vascular function in the adult offspring, and whether these long-term effects were exacerbated by prolonged consumption of a high salt diet in adulthood. Female Sprague Dawley rats were fed either an iron-restricted or -replete diet prior to and throughout pregnancy. Six weeks prior to experimentation at 6 months of age, adult offspring were fed either a normal or high salt diet. Mesenteric artery responses to vasodilators and vasoconstrictors were assessed ex vivo by wire myography. Male perinatal iron deficient offspring exhibited decreased reliance on nitric oxide with methacholine-induced vasodilatation (interaction P = 0.03), coincident with increased superoxide levels when fed the high salt diet (P = 0.01). Male perinatal iron deficient offspring exhibit enhanced big endothelin-1 conversion to active endothelin-1 (P = 0.02) concomitant with decreased nitric oxide levels (P = 0.005). Female offspring vascular function was unaffected by perinatal iron deficiency, albeit the high salt diet was associated with impaired vasodilation and decreased nitric oxide production (P = 0.02), particularly in the perinatal iron deficient offspring. These findings implicate vascular dysfunction in the sex-specific programming of cardiovascular dysfunction in the offspring by perinatal iron deficiency.


Assuntos
Anemia Ferropriva/fisiopatologia , Dieta/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Parto/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Doenças Vasculares/induzido quimicamente , Animais , Endotélio Vascular/metabolismo , Feminino , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Doenças Vasculares/metabolismo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
7.
J Physiol ; 597(15): 3833-3852, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31165480

RESUMO

KEY POINTS: In vivo, uterine perivascular adipose tissue (PVAT) potentiates uterine artery blood flow in pregnant rats, although not in non-pregnant rats. In isolated preparations, uterine PVAT has pro-contractile and anti-dilatory effects on uterine arteries. Pregnancy induces changes in uterine arteries that makes them responsive to uterine PVAT signalling. ABSTRACT: An increase in uterine artery blood flow (UtBF) is a common and necessary feature of a healthy pregnancy. In the present study, we tested the hypothesis that adipose tissue surrounding uterine arteries (uterine perivascular adipose tissue; PVAT) is a novel local mediator of UtBF and uterine artery tone during pregnancy. In vivo experiments in anaesthetized Sprague-Dawley rats showed that pregnant animals (gestational day 16, term = 22--23 days) had a three-fold higher UtBF compared to non-pregnant animals. Surgical removal of uterine PVAT reduced UtBF only in pregnant rats. In a series of ex vivo bioassays, we demonstrated that uterine PVAT had pro-contractile and anti-dilatory effects on rat uterine arteries. In the presence of PVAT-conditioned media, isolated uterine arteries from both pregnant and non-pregnant rats had reduced vasodilatory responses. In non-pregnant rats, these responses were mediated at the level of uterine vascular smooth muscle, whereas, in pregnant rats, PVAT-media reduced endothelium-dependent relaxation. Pregnancy increased adipocyte size in ovarian adipose tissue but had no effect on uterine PVAT adipocyte morphology. In addition, pregnancy down-regulated the gene expression of metabolic adipokines in uterine but not in aortic PVAT. In conclusion, this is the first study to demonstrate that uterine PVAT plays a regulatory role in UtBF, at least in part, as a result of its actions on uterine artery tone. We propose that the interaction between the uterine vascular wall and its adjacent adipose tissue may provide new insights for interventions in pregnancies with adipose tissue dysfunction and abnormal UtBF.


Assuntos
Tecido Adiposo/fisiologia , Circulação Placentária , Gravidez/fisiologia , Artéria Uterina/fisiologia , Vasoconstrição , Vasodilatação , Animais , Feminino , Ratos , Ratos Sprague-Dawley
8.
PLoS One ; 13(8): e0202871, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161186

RESUMO

BACKGROUND: Medication overdose is a prevalent issue and despite mixed reports of efficacy, the use of intravenous lipid emulsions, notably Intralipid®, for the management of toxicity from lipid-soluble drugs is becoming increasingly prevalent. Whether alternative lipid emulsion formulations have similar efficacy for resuscitation compared to Intralipid is not known. Here, we compared the efficacy of Intralipid and ClinOleic® for resuscitation following overdose with the lipid-soluble beta-adrenergic antagonist propranolol. METHODS: Male Sprague-Dawley rats (age 3-4 months) were anesthetized with isoflurane and instrumented for direct hemodynamic assessments. In Study One, rats (n = 22) were pre-treated with Intralipid 20% (n = 12) or ClinOleic 20% (n = 10) to determine whether the hemodynamic effects of propranolol could be prevented. In Study Two, rats were randomly assigned to Intralipid 20% (1, 2, or 3 mL/kg IV, n = 21) or ClinOleic 20% (1, 2, or 3 mL/kg IV, n = 20) resuscitation groups following propranolol overdose (15 mg/kg IV). In Study Three the effect of Intralipid 20% (1 mL/kg IV, n = 3) and ClinOleic 20% (1 mL/kg IV, n = 3) in the absence of propranolol was investigated. The primary endpoint in all studies was survival time (up to a maximum of 120 minutes), and secondary endpoints were time to achieve 50%, 75%, and 90% of baseline hemodynamic parameters. RESULTS: In Study One, pre-treatment with Intralipid prior to propranolol administration resulted in prolonged survival compared to pre-treatment with ClinOleic at low doses (1 mL/kg; P = 0.002), but provided no benefit at higher doses (3 mL/kg; P = 0.95). In Study Two, Intralipid conferred a survival advantage over ClinOleic, with 18/21 rats surviving 120 minutes in the Intralipid group and only 4/20 survivors in the ClinOleic group (P<0.0001). Median survival times (with interquartile ranges) for rats treated with Intralipid, and ClinOleic, and saline were 120 (80.5-120) min, 21.5 (3.25-74.5) min, and 1 (0.25-2.5) min respectively (P<0.001). Only 3/21 rats in the Intralipid group survived less than 30 minutes, whereas 12/20 ClinOleic treated rats had survival times of less than 30 minutes. The number of rats achieving 75%, and 90% of baseline mean arterial pressure was also greater in the Intralipid group (P<0.05 for both values). Treatment in Study Three did not alter survival times. CONCLUSIONS: Low-dose Intralipid (1, 2, or 3 mL/kg IV) confers a survival advantage up to 120 minutes post-propranolol overdose (the end-point of the experiment) and better hemodynamic recovery compared to ClinOleic (1, 2, or 3 mL/kg IV) in rats with propranolol overdose. As health care centres choose alternate intravenous lipid emulsions, limited availability of Intralipid could impact efficacy and success of overdose treatment for lipid-soluble drugs.


Assuntos
Overdose de Drogas/terapia , Emulsões Gordurosas Intravenosas/farmacologia , Fosfolipídeos/farmacologia , Óleos de Plantas/farmacologia , Propranolol/efeitos adversos , Óleo de Soja/farmacologia , Animais , Overdose de Drogas/fisiopatologia , Emulsões/farmacologia , Hemodinâmica , Estimativa de Kaplan-Meier , Masculino , Distribuição Aleatória , Ratos Sprague-Dawley
9.
FASEB J ; 32(6): 3254-3263, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401611

RESUMO

Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.


Assuntos
Feto/metabolismo , Deficiências de Ferro , Rim/embriologia , Fígado/embriologia , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Complicações na Gravidez/metabolismo , Caracteres Sexuais , Animais , Feminino , Feto/patologia , Rim/patologia , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Gravidez , Complicações na Gravidez/patologia , Ratos , Ratos Sprague-Dawley
10.
Sci Rep ; 7: 46573, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440316

RESUMO

Prenatal iron-deficiency (ID) is known to alter fetal developmental trajectories, which predisposes the offspring to chronic disease in later life, although the underlying mechanisms remain unclear. Here, we sought to determine whether varying degrees of maternal anaemia could induce organ-specific patterns of hypoxia in the fetuses. Pregnant female Sprague Dawley rats were fed iron-restricted or iron-replete diets to induce a state of moderate (M-ID) or severe ID (S-ID) alongside respective controls. Ultrasound biomicroscopy was performed on gestational day (GD)20 to assess uterine and umbilical artery blood flow patterns. On GD21, tissues were collected and assessed for hypoxia using pimonidazole staining. Compared to controls, maternal haemoglobin (Hb) in M- and S-ID were reduced 17% (P < 0.01) and 48% (P < 0.001), corresponding to 39% (P < 0.001) and 65% (P < 0.001) decreases in fetal Hb. Prenatal ID caused asymmetric fetal growth restriction, which was most pronounced in S-ID. In both severities of ID, umbilical artery resistive index was increased (P < 0.01), while pulsatility index only increased in S-ID (P < 0.05). In both M-and S-ID, fetal kidneys and livers showed evidence of hypoxia (P < 0.01 vs. controls), whereas fetal brains and placentae remained normoxic. These findings indicate prenatal ID causes organ-specific fetal hypoxia, even in the absence of severe maternal anaemia.


Assuntos
Anemia Ferropriva , Encéfalo , Doenças Fetais/sangue , Deficiências de Ferro , Placenta , Anemia Ferropriva/sangue , Anemia Ferropriva/embriologia , Anemia Ferropriva/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Encéfalo/patologia , Feminino , Placenta/irrigação sanguínea , Placenta/embriologia , Placenta/patologia , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Hypertension ; 67(5): 1038-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928803

RESUMO

This study was undertaken to determine whether perinatal maternal resveratrol (Resv)--a phytoalexin known to confer cardiovascular protection--could prevent the development of hypertension and improve vascular function in adult spontaneously hypertensive rat offspring. Dams were fed either a control or Resv-supplemented diet (4 g/kg diet) from gestational day 0.5 until postnatal day 21. Indwelling catheters were used to assess blood pressure and vascular function in vivo; wire myography was used to assess vascular reactivity ex vivo. Perinatal Resv supplementation in dams had no effect on fetal body weights, albeit continued maternal treatment postnatally resulted in growth restriction in offspring by postnatal day 21; growth restriction was no longer evident after 5 weeks of age. Maternal perinatal Resv supplementation prevented the onset of hypertension in adult offspring (-18 mm Hg; P=0.007), and nitric oxide synthase inhibition (with L-NG-nitroarginine methyl ester) normalized these blood pressure differences, suggesting improved nitric oxide bioavailability underlies the hemodynamic alterations in the Resv-treated offspring. In vivo and ex vivo, vascular responses to methylcholine were not different between treatment groups, but prior treatment with L-NG-nitroarginine methyl ester attenuated the vasodilation in untreated, but not Resv-treated adult offspring, suggesting a shift toward nitric oxide-independent vascular control mechanisms in the treated group. Finally, bioconversion of the inactive precursor big endothelin-1 to active endothelin-1 in isolated mesenteric arteries was reduced in Resv-treated offspring (-28%; P<0.05), and this difference could be normalized by L-NG-nitroarginine methyl ester treatment. In conclusion, perinatal maternal Resv supplementation mitigated the development of hypertension and causes persistent alterations in vascular responsiveness in spontaneously hypertensive rats.


Assuntos
Suplementos Nutricionais , Hipertensão/prevenção & controle , Prenhez , Estilbenos/farmacologia , Adulto , Filhos Adultos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Assistência Perinatal/métodos , Gravidez , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Valores de Referência , Resveratrol
12.
PLoS One ; 9(12): e115006, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25502445

RESUMO

BACKGROUND: We have previously characterized several antihypertensive peptides in simulated digests of cooked eggs and showed blood pressure lowering property of fried whole egg digest. However, the long-term effects of this hydrolysate and its fractions on blood pressure are not known. Therefore, the objectives of the study were to determine the effects of long term administration of fried whole egg hydrolysate and its fractions (i.e. egg white and egg yolk) on regulation of blood pressure and associated factors in cardiovascular disease such as plasma lipid profile and tissue oxidative stress. METHODS AND RESULTS: We used spontaneously hypertensive rats (SHR), an animal model of essential hypertension. Hydrolysates of fried egg and its fractions were prepared by simulated gastro-intestinal digestion with pepsin and pancreatin. 16-17 week old male SHRs were orally administered fried whole egg hydrolysate, non-hydrolyzed fried whole egg, egg white hydrolysate or egg yolk hydrolysates (either defatted, or not) daily for 18 days. Blood pressure (BP) and heart rate were monitored by telemetry. Animals were sacrificed at the end of the treatment for vascular function studies and evaluating plasma lipid profile and tissue oxidative stress. BP was reduced by feeding fried whole egg hydrolysate but not by the non-hydrolyzed product suggesting a critical role for in vitro digestion in releasing anti-hypertensive peptides. Egg white hydrolysate and defatted egg yolk hydrolysate (but not egg yolk hydrolysate) also had similar effects. Reduction in BP was accompanied by the restoration of nitric oxide (NO) dependent vasorelaxation and reduction of plasma angiotensin II. Fried whole egg hydrolysate also reduced plasma levels of triglyceride although it was increased by the non-hydrolyzed sample. Additionally the hydrolyzed preparations attenuated tissue oxidative stress. CONCLUSION: Our results demonstrate that fried egg hydrolysates exert anti-hypertensive effects, improve plasma lipid profile and attenuate tissue oxidative stress in vivo.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Hipertensão/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Hidrolisados de Proteína/administração & dosagem , Angiotensina II/sangue , Animais , Clara de Ovo , Hipertensão Essencial , Humanos , Hipertensão/sangue , Hipertensão/patologia , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos SHR
13.
PLoS One ; 8(11): e82829, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312436

RESUMO

BACKGROUND: There is a growing interest in using functional food components as therapy for cardiovascular diseases such as hypertension. We have previously characterized a tri-peptide IRW (Ile-Arg-Trp) from egg white protein ovotransferrin; this peptide showed anti-inflammatory, anti-oxidant and angiotensin converting enzyme (ACE) inhibitor properties in vitro. Given the pathogenic roles played by angiotensin, oxidative stress and inflammation in the spontaneously hypertensive rat (SHR), we tested the therapeutic potential of IRW in this well-established model of hypertension. METHODS AND RESULTS: 16-17 week old male SHRs were orally administered IRW at either a low dose (3 mg/Kg BW) or a high dose (15 mg/Kg BW) daily for 18 days. Blood pressure (BP) and heart rate were measured by telemetry. Animals were sacrificed at the end of the treatment for vascular function studies and measuring markers of inflammation. IRW treatment attenuated mean BP by ~10 mmHg and ~40 mmHg at the low- and high-dose groups respectively compared to untreated SHRs. Heart rate was not affected. Reduction in BP was accompanied by the restoration of diurnal variations in BP, preservation of nitric oxide dependent vasorelaxation, as well as reduction of plasma angiotensin II, other inflammatory markers and tissue fibrosis. CONCLUSION: Our results demonstrate anti-hypertensive effects of IRW in vivo likely mediated through ACE inhibition, endothelial nitric oxide synthase and anti-inflammatory properties.


Assuntos
Anti-Hipertensivos/uso terapêutico , Clara de Ovo/química , Hipertensão/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Animais , Vasos Sanguíneos/enzimologia , Western Blotting , Ritmo Circadiano , Imunofluorescência , Hipertensão/fisiopatologia , Masculino , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Nitrosação , Estresse Oxidativo , Ratos , Ratos Endogâmicos SHR , Telemetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA