Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928289

RESUMO

Graph Neural Networks have proven to be very valuable models for the solution of a wide variety of problems on molecular graphs, as well as in many other research fields involving graph-structured data. Molecules are heterogeneous graphs composed of atoms of different species. Composite graph neural networks process heterogeneous graphs with multiple-state-updating networks, each one dedicated to a particular node type. This approach allows for the extraction of information from s graph more efficiently than standard graph neural networks that distinguish node types through a one-hot encoded type of vector. We carried out extensive experimentation on eight molecular graph datasets and on a large number of both classification and regression tasks. The results we obtained clearly show that composite graph neural networks are far more efficient in this setting than standard graph neural networks.


Assuntos
Redes Neurais de Computação , Algoritmos
2.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892057

RESUMO

Protein-protein interactions (PPIs) are fundamental processes governing cellular functions, crucial for understanding biological systems at the molecular level. Compared to experimental methods for PPI prediction and site identification, computational deep learning approaches represent an affordable and efficient solution to tackle these problems. Since protein structure can be summarized as a graph, graph neural networks (GNNs) represent the ideal deep learning architecture for the task. In this work, PPI prediction is modeled as a node-focused binary classification task using a GNN to determine whether a generic residue is part of the interface. Biological data were obtained from the Protein Data Bank in Europe (PDBe), leveraging the Protein Interfaces, Surfaces, and Assemblies (PISA) service. To gain a deeper understanding of how proteins interact, the data obtained from PISA were assembled into three datasets: Whole, Interface, and Chain, consisting of data on the whole protein, couples of interacting chains, and single chains, respectively. These three datasets correspond to three different nuances of the problem: identifying interfaces between protein complexes, between chains of the same protein, and interface regions in general. The results indicate that GNNs are capable of solving each of the three tasks with very good performance levels.


Assuntos
Bases de Dados de Proteínas , Redes Neurais de Computação , Mapeamento de Interação de Proteínas , Proteínas , Proteínas/química , Proteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional/métodos , Aprendizado Profundo , Mapas de Interação de Proteínas , Algoritmos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA