Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311992

RESUMO

Picrorhiza kurroa is a valuable medicinal herb of Himalayan region, containing two major pharmacological iridoid glycosides: Picroside-I and Picroside-II, in addition to several other secondary metabolites. The metabolic diversity of P. kurroa may stem from the evolutionary processes attributed to pathway genes family expansion via gene duplication or splicing giving rise to paralogues which are further controlled by regulatory components. Occurrence of multiple pathway gene paralogues coupled with which TFs associate with paralogues in different genetic backgrounds (populations) in tissue-specific manner are still unresolved. Here, we unravelled possible correlations between TFs and gene paralogues across a range of P. kurroa accessions which might be contributing to differential contents of Picroside-I and Picroside-II in different tissues/organs. Characterization of shoots, roots, and stolons of eighty-five accessions of P. kurroa revealed significant variations for Picroside-I and Picroside-II contents. Comparative transcriptome analysis of shoot-derived transcriptome (PKSS), and root-derived transcriptome (PKSR) followed by their expression analysis in different P. kurroa accessions revealed TFs; PkWRKY71, PkWRKY12, PkNAC25, and PkMyb46 possibly regulate different gene paralogues. Genes encoding these putative TFs and pathway gene paralogues were further used to generate a robust co-expression network, thereby, uncovering their coordinated behaviour in association with Picroside-I and Picroside-II contents in shoots and roots, respectively. The outcome has provided potential leads, which through further functional validation can provide suitable targets, either for pathway engineering or as gene markers for selection of genetically superior populations of P. kurroa.

2.
Protoplasma ; 260(2): 453-466, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35767110

RESUMO

Picrorhiza kurroa Royle ex Benth is a valuable medicinal herb of North-Western Himalayas due to presence of two major bioactive compounds, picroside-I and picroside-II used in the preparation of several hepatoprotective herbal drugs. These compounds accumulate in stolons/rhizomes; however, biosynthesized in different organs, viz., picroside-I in shoots and picroside-II in roots. As of today, no information exists on what transporters are transporting these metabolites from shoots and roots to the final storage organ, stolon, which ultimately transforms into rhizome. The ATP-binding cassette (ABC) transporters are reported to transport majority of secondary metabolites, including terpenoids in plants, therefore, we mined P. kurroa transcriptomes to identify and shortlist potential candidates. A total of 99 ABC transporter-encoding transcripts were identified in 3 differential transcriptomes, PKSS (shoots), PKSTS (stolons), and PKSR (roots) of P. kurroa, based on in silico comparative analysis and transcript abundance. 15 of these transcripts were further validated for their association using qRT-PCR in shoots, roots and stolon tissues in P. kurroa accessions varying for picroside-I and picroside-II contents. Organ-specific expression analysis revealed that PkABCA1, PkABCG1, and PkABCB5 had comparatively elevated expression in shoots; PkABCB2 and PkABCC2 in roots; PkABCB3 and PkABCC1 in stolon tissues of P. kurroa. Co-expression network analysis using ABC genes as hubs further unravelled important interactions with additional components of biosynthetic machinery. Our study has provided leads, first to our knowledge as of today, on putative ABC transporters possibly involved in long distance and local transport of picrosides in P. kurroa organs, thus opening avenues for designing a suitable genetic intervention strategy.


Assuntos
Picrorhiza , Plantas Medicinais , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Transcriptoma/genética , Picrorhiza/genética , Picrorhiza/química , Picrorhiza/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Perfilação da Expressão Gênica
3.
Mol Biol Rep ; 49(6): 5567-5576, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35581509

RESUMO

BACKGROUND: Picrorhiza kurroa has been reported as an age-old ayurvedic hepato-protection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons in comparison to leaves uprooting of this critically endangered herb has been the only source of this compound. Recently, we reported that P-II acylation likely happen in roots, while stolons serve as the vital P-II storage compartment. Therefore, developing an alternate engineered platform for P-II biosynthesis require identification of P-II specific AT/s. METHODS AND RESULTS: In that direction, egg-NOG function annotated 815 ATs from de novo RNA sequencing of tissue culture based 'shoots-only' system and nursery grown shoots, roots, and stolons varying in P-II content, were cross-compared in silico to arrive at ATs sequences unique and/or common to stolons and roots. Verification for organ and accession-wise upregulation in gene expression of these ATs by qRT-PCR has shortlisted six putative 'P-II-forming' ATs. Further, six-frame translation, ab initio protein structure modelling and protein-ligand molecular docking of these ATs signified one MBOAT domain containing AT with preferential binding to the vanillic acid CoA thiol ester as well as with P-II, implying that this could be potential AT decorating final structure of P-II. CONCLUSIONS: Organ-wise comparative transcriptome mining coupled with reverse transcription real time qRT-PCR and protein-ligand docking led to the identification of an acyltransferases, contributing to the final structure of P-II.


Assuntos
Picrorhiza , Plantas Medicinais , Aciltransferases/genética , Aciltransferases/metabolismo , Cinamatos/metabolismo , Glicosídeos , Glucosídeos Iridoides/metabolismo , Iridoides/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Picrorhiza/genética , Picrorhiza/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
4.
J Clin Exp Hepatol ; 8(4): 352-361, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30568344

RESUMO

BACKGROUND: Chronic infection with Hepatitis C Virus (HCV) poses a major risk for liver disease like cirrhosis, liver failure and hepatocellular carcinoma. In terms of percentage, the prevalence of HCV in India was found to be low to moderate (1-1.5%), but in terms of sheer numbers, India has a significant number of global HCV patients. Presently, HCV can be treated with direct acting-antibody drugs but there is no prophylactic or therapeutic vaccine available against it. In HCV infection, T- and B-cell immunity is important for clearing the virus. In the present study immunoinformatics was used to identify potent vaccine target for HCV vaccine development. METHODS: Sequence of HCV was retrieved from NCBI and their structural analysis was done by using Protpram, PSIPRED, iTASSER and PDBsum servers. T-cell and B-cell epitopes were predicted by Immune Epitope Database and ACBPRED servers. RESULTS: On epitope prediction, 25 and 55 potent MHC-I epitopes and 7 and 13 potent B-cell epitopes were predicted for E1 and E2 protein respectively. Their antigenicity score was also calculated. The most potent MHC-I epitopes were MMMNWSPAV and MAWDMMMNW for HLA-A*02:01 and HLA-B*53:01 and most potent B-cell epitope was TGHRMAWDMMMNWSPA for E1 protein. For E2, four MHC-I epitopes having the lowest binding energy and most potent B-cell epitope was DRPYCWHYAPRPCDTI. CONCLUSION: In the present study, most potent epitopes for HCV was determined on the basis of their antigenicity along with 3D modeling and docking. Identified B- and T-cell epitopes can be used for the development of potent vaccine against most prevalent HCV type in India to limit its infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA