RESUMO
The intricate interplay between macrophage polarization and placenta vascular dysfunction has garnered increasing attention in the context of placental inflammatory diseases. This study delves into the complex relationship between macrophage polarization within the placenta and its potential impact on the development of vascular dysfunction and inflammatory conditions. The placenta, a crucial organ in fetal development, relies on a finely tuned balance of immune responses for proper functioning. Disruptions in this delicate equilibrium can lead to pathological conditions, including inflammatory diseases affecting the fetus and newborn infant. We explored the interconnectedness between placental macrophage polarization and its relevance to lung macrophages, particularly in the context of early life lung development. Bronchopulmonary dysplasia (BPD), the most common chronic lung disease of prematurity, has been associated with abnormal immune responses, and understanding the role of macrophages in this context is pivotal. The investigation aims to shed light on how alterations in placental macrophage polarization may contribute to lung macrophage behavior and, consequently, influence the development of BPD. By unraveling the intricate mechanisms linking macrophage polarization, placental dysfunction and BPD, this research seeks to provide insights that could pave the way for targeted therapeutic interventions. The findings may offer novel perspectives on preventing and managing placental and lung-related pathologies, ultimately contributing to improved maternal and neonatal health outcomes.
RESUMO
Macrophages play a pivotal role in immune responses, particularly in the context of combating microbial threats within tissues. The identification of reliable biomarkers associated with macrophage function is essential for understanding their diverse roles in host defense. This study investigates the potential of C1QA as an invariant biomarker for tissue macrophages, focusing on its correlation with the anti-microbial pathway. C1QA, a component of the complement system, has been previously implicated in various immune functions. Our research delves into the specific association of C1QA with tissue-resident macrophages and its implications in the context of anti-microbial responses. Through comprehensive systems biology and Boolean analysis of gene expression, we aim to establish C1QA as a consistent and reliable marker for identifying tissue macrophages. Furthermore, we explore the functional significance of C1QA in the anti-microbial pathway. This research seeks to provide valuable insights into the molecular mechanisms underlying the anti-microbial functions of tissue macrophages, with C1QA emerging as a potential key player in this intricate regulatory network. Understanding the relationship between C1QA, tissue macrophages, and the anti-microbial pathway could pave the way for the development of targeted therapeutic strategies aimed at enhancing the host's ability to combat infections. Ultimately, our findings contribute to the expanding knowledge of macrophage biology and may have implications for the diagnosis and treatment of infectious diseases.
RESUMO
mRNA measurement is dominated by RT-PCR, which requires expensive laboratory equipment and personnel with advanced degrees. Loop-mediated isothermal amplification (LAMP) is a versatile technique for detecting target DNA and RNA. The sensitivity of LAMP in early reports has been below that of the standard RT-PCR tests. Here, we report the use of a fluorescence-based RT-LAMP protocol to measure CDX2 expression patterns, which match extremely well to the standards of sophisticated RT-PCR techniques (r = 0.99, p < 0.001). The assay works on diverse sample types such as cDNA, mRNA, and direct tissue sample testing in 25 min compared to more than 3 h for RT-PCR. We have developed a new protocol for designing RT-LAMP primers that reduce false positives due to self-amplification and improve quantification. A simple device with a 3D-printed box enables the measurement of mRNA expression at home, outdoors, and point-of-care setting.
Assuntos
Bioensaio , RNA , RNA Mensageiro/genética , Primers do DNA , DNA ComplementarRESUMO
Numerous gene expression datasets from diverse tissue samples from the plant variety Arabidopsis thaliana have been already deposited in the public domain. There have been several attempts to do large scale meta-analyses of all of these datasets. Most of these analyses summarize pairwise gene expression relationships using correlation, or identify differentially expressed genes in two conditions. We propose here a new large scale meta-analysis of the publicly available Arabidopsis datasets to identify Boolean logical relationships between genes. Boolean logic is a branch of mathematics that deals with two possible values. In the context of gene expression datasets we use qualitative high and low expression values. A strong logical relationship between genes emerges if at least one of the quadrants is sparsely populated. We pointed out serious issues in the data normalization steps widely accepted and published recently in this context. We put together a web resource where gene expression relationships can be explored online which helps visualize the logical relationships between genes. We believe that this website will be useful in identifying important genes in different biological context. The web link is http://hegemon.ucsd.edu/plant/.