Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Ecol Evol ; 14(5): e11412, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770118

RESUMO

Subtropical reefs host a dynamic mix of tropical, subtropical, and temperate species that is changing due to shifts in the abundance and distribution of species in response to ocean warming. In these transitional communities, biogeographic affinity is expected to predict changes in species composition, with projected increases of tropical species and declines in cool-affinity temperate species. Understanding population dynamics of species along biogeographic transition zones is critical, especially for habitat engineers such as sea urchins that can facilitate ecosystem shifts through grazing. We investigated the population dynamics of sea urchins on coral-associated subtropical reefs at 7 sites in eastern Australia (28.196° S to 30.95° S) over 9 years (2010-2019), a period impacted by warming and heatwaves. Specifically, we investigated the density and population size structure of taxa with temperate (Centrostephanus rodgersii, Phyllacanthus parvispinus), subtropical (Tripneustes australiae) and tropical (Diadema spp.) affinities. Counter to expectation, biogeographic affinity did not explain shifts in species abundances in this region. Although we expected the abundance of tropical species to increase at their cold range boundaries, tropical Diadema species declined across all sites. The subtropical T. australiae also showed declines, while populations of the temperate C. rodgersii were remarkably stable throughout our study period. Our results show that temporal patterns of sea urchin populations in this region cannot be predicted by bio-geographic affinity alone and contribute critical information about the population dynamics of these important herbivores along this biogeographic transition zone.

2.
Sci Rep ; 14(1): 6327, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491152

RESUMO

Long-term demographic studies at biogeographic transition zones can elucidate how body size mediates disturbance responses. Focusing on subtropical reefs in eastern Australia, we examine trends in the size-structure of corals with contrasting life-histories and zoogeographies surrounding the 2016 coral bleaching event (2010-2019) to determine their resilience and recovery capacity. We document demographic shifts, with disproportionate declines in the number of small corals and long-term persistence of larger corals. The incidence of bleaching (Pocillopora, Turbinaria) and partial mortality (Acropora, Pocillopora) increased with coral size, and bleached corals had greater risk of partial mortality. While endemic Pocillopora experienced marked declines, decadal stability of Turbinaria despite bleaching, coupled with abundance increase and bleaching resistance in Acropora indicate remarkable resilience of these taxa in the subtropics. Declines in the number of small corals and variable associations with environmental drivers indicate bottlenecks to recovery mediated by inhibitory effects of thermal extremes for Pocillopora (heat stress) and Acropora (heat and cold stress), and stimulatory effects of chlorophyll-a for Turbinaria. Although our study reveals signs of resilience, it foreshadows the vulnerability of subtropical corals to changing disturbance regimes that include marine heatwaves. Disparity in population dynamics suggest that subtropical reefs are ecologically distinct from tropical coral reefs.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Dinâmica Populacional , Clorofila A , Resposta ao Choque Térmico
3.
Sci Total Environ ; 914: 169984, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218470

RESUMO

The Red Sea has been recognized as a coral reef refugia, but it is vulnerable to warming and pollution. Here we investigated the spatial and temporal trends of 15 element concentrations in 9 coral reef sediment cores (aged from the 1460s to the 1980s AD) to study the influence of global warming and industrialization on the Eastern Red Sea coral reefs. We found Na, Ca, Cr, Fe, Co, Ni, and Sr concentrations were higher in the northern Red Sea (i.e., Yanbu), whereas Mg, P, S, Mn, and Cd concentrations were higher in the southern Red Sea (i.e., Thuwal & Al Lith) reef sediments. In the central (i.e., Thuwal) to southern (i.e., Al Lith) Red Sea, the study revealed diverse temporal trends in element concentrations. However, both reef sedimentation rates (-36.4 % and -80.5 %, respectively) and elemental accumulation rates (-49.4 % for Cd to -12.2 % for Zn in Thuwal, and -86.2 % for Co to -61.4 % for Cu in Al Lith) exhibited a declining pattern over time, possibly attributed to warming-induced thermal bleaching. In the central to northern Red Sea (i.e., Yanbu), the severity of thermal bleaching is low, while the reef sedimentation rates (187 %), element concentrations (6.7 % for S to 764 % for Co; except Na, Mg, Ca, Sr, and Cd), and all elemental accumulation rates (190 % for Mg to 2697 % for Co) exponentially increased from the 1970s, probably due the rapid industrialization in Yanbu. Our study also observed increased trace metal concentrations (e.g., Cu, Zn, and Ni) in the Thuwal and Al Lith coral reefs with severe bleaching histories, consistent with previous reports that trace metals might result in decreased resistance of corals to thermal stress under warming scenarios. Our study points to the urgent need to reduce the local discharge of trace metal pollutants to protect this biodiversity hotspot.


Assuntos
Antozoários , Recifes de Corais , Animais , Aquecimento Global , Oceano Índico , Cádmio , Desenvolvimento Industrial
4.
Ecology ; 104(9): e4138, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458125

RESUMO

The persistent exposure of coral assemblages to more variable abiotic regimes is assumed to augment their resilience to future climatic variability. Yet, while the determinants of coral population resilience across species remain unknown, we are unable to predict the winners and losers across reef ecosystems exposed to increasingly variable conditions. Using annual surveys of 3171 coral individuals across Australia and Japan (2016-2019), we explore spatial variation across the short- and long-term dynamics of competitive, stress-tolerant, and weedy assemblages to evaluate how abiotic variability mediates the structural composition of coral assemblages. We illustrate how, by promoting short-term potential over long-term performance, coral assemblages can reduce their vulnerability to stochastic environments. However, compared to stress-tolerant, and weedy assemblages, competitive coral taxa display a reduced capacity for elevating their short-term potential. Accordingly, future climatic shifts threaten the structural complexity of coral assemblages in variable environments, emulating the degradation expected across global tropical reefs.


Assuntos
Antozoários , Humanos , Animais , Ecossistema , Recifes de Corais , Austrália , Japão
5.
Glob Chang Biol ; 29(14): 4140-4151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148129

RESUMO

Climate change is driving rapid and widespread erosion of the environmental conditions that formerly supported species persistence. Existing projections of climate change typically focus on forecasts of acute environmental anomalies and global extinction risks. The current projections also frequently consider all species within a broad taxonomic group together without differentiating species-specific patterns. Consequently, we still know little about the explicit dimensions of climate risk (i.e., species-specific vulnerability, exposure and hazard) that are vital for predicting future biodiversity responses (e.g., adaptation, migration) and developing management and conservation strategies. Here, we use reef corals as model organisms (n = 741 species) to project the extent of regional and global climate risks of marine organisms into the future. We characterise species-specific vulnerability based on the global geographic range and historical environmental conditions (1900-1994) of each coral species within their ranges, and quantify the projected exposure to climate hazard beyond the historical conditions as climate risk. We show that many coral species will experience a complete loss of pre-modern climate analogs at the regional scale and across their entire distributional ranges, and such exposure to hazardous conditions are predicted to pose substantial regional and global climate risks to reef corals. Although high-latitude regions may provide climate refugia for some tropical corals until the mid-21st century, they will not become a universal haven for all corals. Notably, high-latitude specialists and species with small geographic ranges remain particularly vulnerable as they tend to possess limited capacities to avoid climate risks (e.g., via adaptive and migratory responses). Predicted climate risks are amplified substantially under the SSP5-8.5 compared with the SSP1-2.6 scenario, highlighting the need for stringent emission controls. Our projections of both regional and global climate risks offer unique opportunities to facilitate climate action at spatial scales relevant to conservation and management.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Biodiversidade , Mudança Climática , Organismos Aquáticos , Refúgio de Vida Selvagem , Recifes de Corais , Ecossistema
6.
Reg Environ Change ; 23(2): 66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125023

RESUMO

Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 ('Life below Water') of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia-Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds.

7.
Nat Commun ; 14(1): 2181, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069145

RESUMO

Temperate reefs are at the forefront of warming-induced community alterations resulting from poleward range shifts. This tropicalisation is exemplified and amplified by tropical species' invasions of temperate herbivory functions. However, whether other temperate ecosystem functions are similarly invaded by tropical species, and by what drivers, remains unclear. We examine tropicalisation footprints in nine reef fish functional groups using trait-based analyses and biomass of 550 fish species across tropical to temperate gradients in Japan and Australia. We discover that functional niches in transitional communities are asynchronously invaded by tropical species, but with congruent invasion schedules for functional groups across the two hemispheres. These differences in functional group tropicalisation point to habitat availability as a key determinant of multi-species range shifts, as in the majority of functional groups tropical and temperate species share functional niche space in suitable habitat. Competition among species from different thermal guilds played little part in limiting tropicalisation, rather available functional space occupied by temperate species indicates that tropical species can invade. Characterising these drivers of reef tropicalisation is pivotal to understanding, predicting, and managing marine community transformation.


Assuntos
Recifes de Corais , Ecossistema , Animais , Peixes , Austrália , Biomassa
8.
Sci Total Environ ; 844: 157180, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35809731

RESUMO

Climate change is degrading coral reefs around the world. Mass coral bleaching events have become more frequent in recent decades, leading to dramatic declines in coral cover. Mesophotic coral ecosystems (30-150 m depth) comprise an estimated 50-80 % of global coral reef area. The potential for these to act as refuges from climate change is unresolved. Here, we report three mesophotic-specific coral bleaching events in the northern Red Sea over the course of eight years. Over the last decade, faster temperature increases at mesophotic depths resulted in ~50 % decline in coral populations, while the adjacent shallow coral reefs remained intact. Further, community structure shifted from hard coral dominated to turf algae dominated throughout these recurrent bleaching events. Our results do not falsify the notion of the northern Red Sea as a thermal refuge for shallow coral reefs, but question the capacity of mesophotic ecosystems to act as a universal tropical refuge.


Assuntos
Antozoários , Ecossistema , Animais , Branqueamento de Corais , Recifes de Corais , Água
9.
Ecol Lett ; 25(6): 1497-1509, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35545440

RESUMO

Anthropogenic disturbance and climate change can result in dramatic increases in the emergence of new, ecologically novel, communities of organisms. We used a standardised framework to detect local novel communities in 2135 pollen time series over the last 25,000 years. Eight thousand years of post-glacial warming coincided with a threefold increase in local novel community emergence relative to glacial estimates. Novel communities emerged predominantly at high latitudes and were linked to global and local temperature change across multi-millennial time intervals. In contrast, emergence of locally novel communities in the last 200 years, although already on par with glacial retreat estimates, occurred at midlatitudes and near high human population densities. Anthropogenic warming does not appear to be strongly associated with modern local novel communities, but may drive widespread emergence in the future, with legacy effects for millennia after warming abates.


Assuntos
Efeitos Antropogênicos , Mudança Climática , Humanos , Plantas , Pólen
11.
Sci Rep ; 12(1): 1386, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082318

RESUMO

Biogenic reefs have been hotspots of biodiversity and evolutionary novelty throughout the Phanerozoic. The largest reef systems in Earth's history occurred in the Devonian period, but collapsed during the Late Devonian Mass Extinction. However, the consequences for the functional diversity of Palaeozoic reefs have received little attention. Here, we examine changes in the functional diversity of tabulate coral assemblages over a 35 million year period from the middle Devonian to the Carboniferous, straddling the multiphase extinction event to identify the causes and ecological consequences of the extinction for tabulate corals. By examining five key morphological traits, we show a divergent response of taxonomic and functional diversity to the mass extinction: taxonomic richness peaked during the Givetian (~ 388-383 Ma) and coincided with peak reef building, but functional diversity was only moderate because many species had very similar trait combinations. The collapse of taxonomic diversity and reef building in the late Devonian had minimal impact on functional richness of coral assemblages. However, non-random shifts towards species with larger corallites and lower colony integration suggest a shift from photosymbiotic to asymbiotic taxa associated over the study period. Our results suggest that the collapse of the huge Devonian reef systems was correlated with a breakdown of photosymbiosis and extinction of photosymbiotic tabulate coral taxa. Despite the appearance of new tabulate coral species over the next 35 million years, the extinction of taxa with photosymbiotic traits had long-lasting consequences for reef building and, by extension, shallow marine ecosystems in the Palaeozoic.

12.
Glob Chang Biol ; 28(5): 1753-1765, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343392

RESUMO

Over this century, coral reefs will run the gauntlet of climate change, as marine heatwaves (MHWs) become more intense and frequent, and ocean acidification (OA) progresses. However, we still lack a quantitative assessment of how, and to what degree, OA will moderate the responses of corals to MHWs as they intensify throughout this century. Here, we first projected future MHW intensities for tropical regions under three future greenhouse gas emissions scenario (representative concentration pathways, RCP2.6, RCP4.5 and RCP8.5) for the near-term (2021-2040), mid-century (2041-2060) and late-century (2081-2100). We then combined these MHW intensity projections with a global data set of 1,788 experiments to assess coral attribute performance and survival under the three emissions scenarios for the near-term, mid-century and late-century in the presence and absence of OA. Although warming and OA had predominately additive impacts on the coral responses, the contribution of OA in affecting most coral attributes was minor relative to the dominant role of intensifying MHWs. However, the addition of OA led to greater decreases in photosynthesis and survival under intermediate and unrestricted emissions scenario for the mid- and late-century than if intensifying MHWs were considered as the only driver. These results show that role of OA in modulating coral responses to intensifying MHWs depended on the focal coral attribute and extremity of the scenario examined. Specifically, intensifying MHWs and OA will cause increasing instances of coral bleaching and substantial declines in coral productivity, calcification and survival within the next two decades under the low and intermediate emissions scenario. These projections suggest that corals must rapidly adapt or acclimatize to projected ocean conditions to persist, which is far more likely under a low emissions scenario and with increasing efforts to manage reefs to enhance resilience.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
13.
Sci Total Environ ; 809: 151176, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699835

RESUMO

Reefs are biogenic structures that result in three-dimensional accumulations of calcium carbonate. Over geological timescales, a positive balance between the production and accumulation of calcium carbonate versus erosional and off-reef transport processes maintains positive net accretion on reefs. Yet, how ecological processes occurring over decadal timescales translate to the accumulation of geological structures is poorly understood, in part due to a lack of studies with detailed time-constrained chronologies of reef accretion over decades to centuries. Here, we combined ecological surveys of living reefs with palaeoecological reconstructions and high-precision radiometric (U-Th) age-dating of fossil reefs represented in both reef sediment cores and surficial dead in situ corals, to reconstruct the history of community composition and carbonate accumulation across the central and southern Saudi Arabian Red Sea throughout the late Holocene. We found that reefs were primarily comprised of thermally tolerant massive Porites colonies, creating a consolidated coral framework, with unconsolidated branching coral rubble accumulating among massive corals on shallow (5-8 m depth) exposed (windward), and gently sloping reef slopes. These unconsolidated reef rubble fields were formed primarily from ex situ Acropora and Pocillopora coral fragments, infilled post deposition within a sedimentary matrix. Bayesian age-depth models revealed a process of punctuated deposition of post-mortem coral fragments transported from adjacent reef environments. That a large portion of Saudi Arabian Red Sea reef slopes is driven by allochthonous deposition (transportation) has important implications for modeling carbonate budgets and reef growth. In addition, a multi-decadal lag exists between the time of death for branching in situ coral and incorporation into the unconsolidated reef rubble. This indicates that recent climate related degradation in the 21st century has not had an immediately negative effect on reef building processes affecting a large portion of the reef area in the Saudi Arabian Red Sea.


Assuntos
Antozoários , Recifes de Corais , Animais , Teorema de Bayes , Oceano Índico , Arábia Saudita
14.
Ecol Evol ; 11(15): 10098-10118, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367562

RESUMO

The mass die-off of Caribbean corals has transformed many of this region's reefs to macroalgal-dominated habitats since systematic monitoring began in the 1970s. Although attributed to a combination of local and global human stressors, the lack of long-term data on Caribbean reef coral communities has prevented a clear understanding of the causes and consequences of coral declines. We integrated paleoecological, historical, and modern survey data to track the occurrence of major coral species and life-history groups throughout the Caribbean from the prehuman period to the present. The regional loss of Acropora corals beginning by the 1960s from local human disturbances resulted in increases in the occurrence of formerly subdominant stress-tolerant and weedy scleractinian corals and the competitive hydrozoan Millepora beginning in the 1970s and 1980s. These transformations have resulted in the homogenization of coral communities within individual countries. However, increases in stress-tolerant and weedy corals have slowed or reversed since the 1980s and 1990s in tandem with intensified coral bleaching and disease. These patterns reveal the long history of increasingly stressful environmental conditions on Caribbean reefs that began with widespread local human disturbances and have recently culminated in the combined effects of local and global change.

15.
Glob Chang Biol ; 27(21): 5532-5546, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391212

RESUMO

Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organisms respond to variation of environmental drivers. However, an assessment of how well experimental conditions cover the breadth of environmental conditions and variability where corals live successfully is missing. Here, we compiled and analyzed a globally distributed dataset of in-situ seasonal and diurnal variability of key environmental drivers (temperature, pCO2 , and O2 ) critical for the growth and livelihood of reef-building corals. Using a meta-analysis approach, we compared the variability of environmental conditions assayed in coral experimental studies to current and projected conditions in their natural habitats. We found that annual temperature profiles projected for the end of the 21st century were characterized by distributional shifts in temperatures with warmer winters and longer warm periods in the summer, not just peak temperatures. Furthermore, short-term hourly fluctuations of temperature and pCO2 may regularly expose corals to conditions beyond the projected average increases for the end of the 21st century. Coral reef sites varied in the degree of coupling between temperature, pCO2 , and dissolved O2 , which warrants site-specific, differentiated experimental approaches depending on the local hydrography and influence of biological processes on the carbonate system and O2 availability. Our analysis highlights that a large portion of the natural environmental variability at short and long timescales is underexplored in experimental designs, which may provide a path to extend our understanding on the response of corals to global climate change.


Assuntos
Antozoários , Animais , Mudança Climática , Recifes de Corais , Oceanos e Mares , Temperatura
16.
J Anim Ecol ; 90(1): 233-247, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920820

RESUMO

Subtropical coral assemblages are threatened by similar extreme thermal stress events to their tropical counterparts. Yet, the mid- and long-term thermal stress responses of corals in subtropical environments remain largely unquantified, limiting our capacity to predict their future viability. The annual survival, growth and recruitment of 311 individual corals within the Solitary Islands Marine Park (Australia) was recorded over a 3-year period (2016-2018), including the 2015/2016 thermal stress event. These data were used to parameterise integral projection models quantifying the effect of thermal stress within a subtropical coral assemblage. Stochastic simulations were also applied to evaluate the implications of recurrent thermal stress scenarios predicted by four different Representative Concentration Pathways. We report differential shifts in population growth rates (λ) among coral populations during both stress and non-stress periods, confirming contrasting bleaching responses among taxa. However, even during non-stress periods, the observed dynamics for all taxa were unable to maintain current community composition, highlighting the need for external recruitment sources to support the community structure. Across all coral taxa, projected stochastic growth rates (λs ) were found to be lowest under higher emissions scenarios. Correspondingly, predicted increases in recurrent thermal stress regimes may accelerate the loss of coral coverage, species diversity and structural complexity within subtropical regions. We suggest that these trends are primarily due to the susceptibility of subtropical specialists and endemic species, such as Pocillopora aliciae, to thermal stress. Similarly, the viability of many tropical coral populations at higher latitudes is highly dependent on the persistence of up-current tropical systems. As such, the inherent dynamics of subtropical coral populations appear unable to support their future persistence under unprecedented thermal disturbance scenarios.


Assuntos
Antozoários , Animais , Austrália , Recifes de Corais , Ilhas
17.
Science ; 370(6513): 220-222, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33033218

RESUMO

Environmental change is transforming ecological assemblages into new configurations, resulting in novel communities. We developed a robust methodology to detect novel communities, examine patterns of emergence, and quantify probabilities of local demographic turnover in transitions to and from novel communities. Using a global dataset of Cenozoic marine plankton communities, we found that the probability of local extinction, origination, and emigration during transitions to a novel community increased two to four times that of background community changes. Although rare, novel communities were five times more likely than chance to shift into another novel state. For marine plankton communities at a 100,000-year time grain, novel communities were sensitive to further extinctions and substantial community change.


Assuntos
Biodiversidade , Extinção Biológica , Plâncton , Conjuntos de Dados como Assunto , Especiação Genética , Espécies Introduzidas , Probabilidade
18.
Sci Adv ; 6(34)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32937375

RESUMO

With predictions that mass coral bleaching will occur annually within this century, conservation efforts must focus their limited resources based on an accurate understanding of the drivers of bleaching. Here, we provide spatial and temporal evidence that excess nutrients exacerbate the detrimental effects of heat stress to spark mass coral bleaching in the Red Sea. Exploiting this region's unique oceanographic regime, where nutrients and heat stress vary independently, we demonstrate that the world's third largest coral reef system historically suffered from severe mass bleaching only when exposed to both unusually high temperature and nutrients. Incorporating nutrient-supplying ocean currents and their variability into coral bleaching forecasts will be critical for effectively guiding efforts to safeguard the reefs most likely to persist in the Anthropocene.

19.
Sci Adv ; 6(17): eaax9395, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32426458

RESUMO

The mass mortality of acroporid corals has transformed Caribbean reefs from coral- to macroalgal-dominated habitats since systematic monitoring began in the 1970s. Declines have been attributed to overfishing, pollution, sea urchin and coral disease, and climate change, but the mechanisms are unresolved due to the dearth of pre-1970s data. We used paleoecological, historical, and survey data to track Acropora presence and dominance throughout the Caribbean from the prehuman period to present. Declines in dominance from prehuman values first occurred in the 1950s for Acropora palmata and the 1960s for Acropora cervicornis, decades before outbreaks of acroporid disease or bleaching. We compared trends in Acropora dominance since 1950 to potential regional and local drivers. Human population negatively affected and consumption of fertilizer for agriculture positively affected A. palmata dominance, the latter likely due to lower human presence in agricultural areas. The earlier, local roots of Caribbean Acropora declines highlight the urgency of mitigating local human impacts.


Assuntos
Antozoários , Animais , Região do Caribe , Conservação dos Recursos Naturais , Branqueamento de Corais , Recifes de Corais , Surtos de Doenças , Pesqueiros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA