Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573361

RESUMO

The antioxidant capacity of polyphenols and flavonoids present in dietary agents aids in arresting the development of reactive oxygen species (ROS) and protecting endothelial smooth muscle cells from oxidative stress/induced necrosis. Beetroot (Beta vulgaris var. rubra L.; BVr) is a commonly consumed vegetable representing a rich source of antioxidants. Beetroot peel's bioactive compounds and their role in human umbilical vein endothelial cells (HUVECs) are still under-researched. In the present study, beetroot peel methanol extract (BPME) was prepared, and its effect on the bio-efficacy, nuclear integrity, mitochondrial membrane potential and vascular cell growth, and immunoregulation-related gene expression levels in HUVECs with induced oxidative stress were analysed. Gas chromatography-mass spectroscopy (GC-MS) results confirmed that BPME contains 5-hydroxymethylfurfural (32.6%), methyl pyruvate (15.13%), furfural (9.98%), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one (12.4%). BPME extract effectively enhanced cell proliferation and was confirmed by MTT assay; the nuclear integrity was confirmed by propidium iodide (PI) staining assay; the mitochondrial membrane potential (Δψm) was confirmed by JC-1 staining assay. Annexin V assay confirmed that BPME-treated HUVECs showed 99% viable cells, but only 39.8% viability was shown in HUVECs treated with H2O2 alone. In addition, BPME treatment of HUVECs for 48 h reduced mRNA expression of lipid peroxide (LPO) and increased NOS-3, Nrf-2, GSK-3ß, GPX, endothelial nitric oxide synthase (eNOS) and vascular cell growth factor (VEGF) mRNA expression levels. We found that BPME treatment decreased proinflammatory (nuclear factor-κß (F-κß), tissue necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), interleukin-1ß (IL-1ß)) and vascular inflammation (intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), EDN1, IL-1ß)-related mRNA expressions. In conclusion, beetroot peel treatment effectively increased vascular smooth cell growth factors and microtubule development, whereas it decreased vascular inflammatory regulators. BPME may be beneficial for vascular smooth cell regeneration, tissue repair and anti-ageing potential.


Assuntos
Antioxidantes/farmacologia , Beta vulgaris/química , Extratos Vegetais/farmacologia , Antioxidantes/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/toxicidade , Metanol/química , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/agonistas , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Foods ; 9(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235695

RESUMO

The present study aimed to determine the role of Salvia hispanica L., (chia seed) fatty acid content in adipocyte lipid accumulation and human macrophage immunoregulatory potential. Chia seed fatty acid was extracted using hexane by the cold percolation method. A gas chromatography-mass spectrometry (GC-MS) analysis showed a 3:1 ratio of omega 3 and omega 6 fatty acid composition and it was more beneficial for human health. We treated it with increasing concentrations (0-6.4 µg/mL) of chia seed fatty acid extract to determine the cytotoxicity on the preadipocytes and macrophage; no significant cytotoxicity was observed. Chia seed, in 0.2 and 0.4 µg/mL doses, significantly arrested adipocyte hypertrophy and macrophage foam cell development. The gene expression levels of adipocyte confirmed the increased expression of adipocyte mitochondrial thermogenesis related genes, such as uncoupling protein-1 (UCP-1), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARγC1α) and PR domain containing 16 (PRDM16); and the down regulated expression of the lipid synthesis related gene sterol regulatory element binding of protein-1c (SREBP-1c). In addition, adipogenesis related genes, such as the proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα) expressions, have been down regulated by chia seed treatment. Macrophage treated with chia seed-treated adipocyte condition media significantly inhibited the obesity associated inflammatory genes and protein expression levels, such as monocyte chemo attractant protein-1 (MCP-1), prostaglandins E2, interleukin-6, plasminogen activator inhibitor-1 (PAI-1) and tumor necrosis factor-α (TNF-α). In conclusion, a 3:1 ratio of omega 3 and omega 6 fatty acid composition of chia seed fatty acid content potentially inhibits lipid accumulation, and enhanced fatty acid oxidation, via UCP-1 and PRDM16 expression. Macrophage recruitment to adipocyte and the development of obesity associated inflammation was suppressed by chia seeds.

3.
Biomolecules ; 9(12)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817548

RESUMO

Human gut microbes are a profitable tool for the modification of food compounds into biologically active metabolites. The biological properties of catechins have been extensively investigated. However, the bioavailability of catechin in human blood plasma is very low. This study aimed to determine the biotransformed catechin metabolites and their bioactive potentials for modulating the immune response of human peripheral blood mononuclear cells (PBMCs). Biotransformation of catechin was carried out using in-vitro gut microbial biotransformation method, the transformed metabolites were identified and confirmed by gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-mass spectrometry (HPLC-MS). Present observations confirmed that the catechin was biotransformed into 11 metabolites upon microbial dehydroxylation and C ring cleavage. Further, immunomodulatory potential of catechin metabolites was analyzed in peripheral blood mononuclear cells (PBMCs). We found up-regulation of anti-inflammatory cytokine (IL-4, IL-10) and down-regulation of pro-inflammatory (IL-16, IL-12B) cytokine may be due to Th2 immune response. In conclusion, biotransformed catechin metabolites enhance anti-inflammatory cytokines which is beneficial for overcoming inflammatory disorders.


Assuntos
Catequina/farmacocinética , Colo/microbiologia , Citocinas/metabolismo , Leucócitos Mononucleares/imunologia , Biotransformação , Catequina/química , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal , Regulação da Expressão Gênica/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Interleucina-10/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-16/metabolismo , Interleucina-4/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos
4.
Biomol Ther (Seoul) ; 21(5): 391-7, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24244827

RESUMO

In the present study, we aimed to analyze the antinociceptive, immunomodulatory and antipyretic activities of nymphayol were investigated in wistar rats and mice. Antinociceptive effect was evaluated by acetic acid induced writhing, formalin induced paw licking and hot-plate tests. Immunomodulatory activity was assessed by neutrophil adhesion test, humoral response to sheep red blood cells, delayed-type hypersensitivity, phagocytic activity and cyclophosphamide induced myelosuppression. Antipyretic activity was evaluated by yeast induced hyperthermia in rats. Nymphayol produced signifi cant (p<0.05) antinociceptive activity in acetic acid induced writhing response and late phase of the formalin induced paw licking response. Pre-treatment with nymphayol (50 mg/kg, oral) evoked a signifi cant increase in neutrophil adhesion to nylon fi bres. The augmentation of humoral immune response to sheep red blood cells by nymphayol (50 mg/kg) was evidenced by increase in antibody titres in rats. Oral administration of nymphayol (50 mg/kg) to rats potentiated the delayed-type hypersensitivity reaction induced by sheep red blood cells. Treatment with nymphayol showed a signifi cant (p<0.05) reduction in pyrexia in rats. The results suggest that nymphayol possesses potent anti-nociceptive, immunomodulatory and antipyretic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA