Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Bone Joint Surg Am ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753817

RESUMO

BACKGROUND: Optimizing the function of muscles that cross the glenohumeral articulation in reverse total shoulder arthroplasty (RTSA) is controversial. The current study used a geometric model of the shoulder to systematically examine surgical placement and implant-design parameters to determine which RTSA configuration most closely reproduces native muscle-tendon lengths of the deltoid and rotator cuff. METHODS: A geometric model of the glenohumeral joint was developed and adjusted to represent small, medium, and large shoulders. Muscle-tendon lengths were assessed for the anterior deltoid, middle deltoid, posterior deltoid, and supraspinatus from 0 to 90° of scaption; for the subscapularis from 0° to 60° of internal rotation (IR) and 0° to 60° of scaption; for the infraspinatus from 0° to 60° of external rotation (ER) and 0° to 60° of scaption; and for the teres minor from 0° to 60° of ER at 90° of scaption. RTSA designs were virtually implanted using the following parameters: (1) surgical placement with a centered or inferior glenosphere position and a humeral offset of 0, 5, or 10 mm relative to the anatomic neck plane, (2) implant design involving a glenosphere size of 30, 36, or 42 mm, glenosphere lateralization of 0, 5, or 10 mm, and humeral neck-shaft angle of 135°, 145°, or 155°. Thus, 486 RTSA-shoulder size combinations were analyzed. Linear regression assessed the strength of association between parameters and the change in each muscle-tendon length from the native length. RESULTS: The configuration that most closely restored anatomic muscle-tendon lengths in a small shoulder was a 30-mm glenosphere with a centered position, 5 mm of glenoid lateralization, 0 mm of humeral offset, and a 135° neck-shaft angle. For a medium shoulder, the corresponding combination was 36 mm, centered, 5 mm, 0 mm, and 135°. For a large shoulder, it was 30 mm, centered, 10 mm, 0 mm, and 135°. The most important implant-design parameter associated with restoration of native muscle-tendon lengths was the neck-shaft angle, with a 135° neck-shaft angle being favored (ß = 0.568 to 0.657, p < 0.001). The most important surgical parameter associated with restoration of native muscle-tendon lengths was humeral offset, with a humeral socket placed at the anatomic neck plane being favored (ß = 0.441 to 0.535, p < 0.001). CONCLUSIONS: A combination of a smaller, lateralized glenosphere, a humeral socket placed at the anatomic neck plane, and an anatomic 135° neck-shaft angle best restored native deltoid and rotator cuff muscle-tendon lengths in RTSA. CLINICAL RELEVANCE: This study of surgical and implant factors in RTSA highlighted optimal configurations for restoration of native muscle-tendon lengths of the deltoid and rotator cuff, which has direct implications for surgical technique and implant selection. Additionally, it demonstrated the most influential surgical and implant factors with respect to muscle-tendon lengths, which can be used to aid intraoperative decision-making.

2.
Ann Biomed Eng ; 52(6): 1779-1794, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530534

RESUMO

Tibiofemoral slip velocity is a key contributor to total knee arthroplasty (TKA) component wear, yet few studies have evaluated this quantity in vivo. The aim of the present study was to measure and compare tibiofemoral slip velocities in 3 TKA designs for a range of daily activities. Mobile biplane X-ray imaging was used to measure 6-degree-of-freedom tibiofemoral kinematics and the locations of articular contact in 75 patients implanted with a posterior-stabilized, cruciate-retaining, or medial-stabilized design while each patient performed level walking, step up, step down, sit-to-stand, and stand-to-sit. Using these data, tibiofemoral slip velocity was calculated for the duration of each activity for each TKA design. The pattern of tibiofemoral slip velocity was similar for all 3 TKA designs within each activity but markedly different across the 5 activities tested, with the magnitude of peak slip velocity being significantly higher in level walking (range: 158-211 mm/s) than in all other activities (range: 43-75 mm/s). The pattern of tibiofemoral slip velocity in both the medial and lateral compartments closely resembled the pattern of tibiofemoral (knee) flexion angular velocity, with a strong linear relationship observed between slip velocity and flexion angular velocity (r = 0.81-0.97). Tibiofemoral slip velocity was invariant to TKA design but was significantly affected by activity type. Our measurements of slip velocity and articular contact locations for a wide range of daily activities may be used as inputs in joint simulator testing protocols and computational models developed to estimate TKA component wear.


Assuntos
Artroplastia do Joelho , Fêmur , Humanos , Feminino , Masculino , Idoso , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Fêmur/cirurgia , Pessoa de Meia-Idade , Prótese do Joelho , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiopatologia , Desenho de Prótese , Fenômenos Biomecânicos , Idoso de 80 Anos ou mais
3.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400409

RESUMO

The performance of the overhead squat may affect the golf swing mechanics associated with golf-related low back pain. This study investigates the difference in lumbar kinematics and joint loads during the golf downswing between golfers with different overhead squat abilities. Based on the performance of the overhead squat test, 21 golfers aged 18 to 30 years were divided into the highest-scoring group (HS, N = 10, 1.61 ± 0.05 cm, and 68.06 ± 13.67 kg) and lowest-scoring group (LS, N = 11, 1.68 ± 0.10 cm, and 75.00 ± 14.37 kg). For data collection, a motion analysis system, two force plates, and TrackMan were used. OpenSim 4.3 software was used to simulate the joint loads for each lumbar joint. An independent t-test was used for statistical analysis. Compared to golfers demonstrating limitations in the overhead squat test, golfers with better performance in the overhead squat test demonstrated significantly greater angular extension displacement on the sagittal plane, smaller lumbar extension angular velocity, and smaller L4-S1 joint shear force. Consequently, the overhead squat test is a useful index to reflect lumbar kinematics and joint loading patterns during the downswing and provides a good training guide reference for reducing the risk of a golf-related lower back injury.


Assuntos
Golfe , Fenômenos Biomecânicos , Vértebras Lombares , Postura , Fenômenos Mecânicos , Movimento
4.
J Shoulder Elbow Surg ; 32(12): 2550-2560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37419441

RESUMO

BACKGROUND: Reverse shoulder arthroplasty (RSA) increases the moment arm of the deltoid; however, there is limited knowledge on the accompanying changes in muscle architecture that play a role in muscle force production. The purpose of this study was to use a geometric shoulder model to evaluate the anterior deltoid, middle deltoid, and supraspinatus regarding (1) the differences in moment arms and muscle-tendon lengths in small, medium, and large native shoulders and (2) the impact of 3 RSA designs on moment arms, muscle fiber lengths, and force-length (F-L) curves. METHODS: A geometric model of the native glenohumeral joint was developed, validated, and adjusted to represent small, medium, and large shoulders. Moment arms, muscle-tendon lengths, and normalized muscle fiber lengths were assessed for the supraspinatus, anterior deltoid, and middle deltoid from 0° to 90° of abduction. RSA designs were modeled and virtually implanted, including a lateralized glenosphere with an inlay 135° humeral component (lateral glenoid-medial humerus [LGMH]), a medialized glenosphere with an onlay 145° humeral component (medial glenoid-lateral humerus [MGLH]), and a medialized glenosphere with an inlay 155° humeral component (medial glenoid-medial humerus [MGMH]). Descriptive statistics were used to compare moment arms and normalized muscle fiber lengths. RESULTS: As shoulder size increased, the moment arms and muscle-tendon lengths for the anterior deltoid, middle deltoid, and supraspinatus increased. All RSA designs achieved greater moment arms for the anterior and middle deltoid, with the MGLH design achieving the largest increase. The resting normalized muscle fiber length of the anterior and middle deltoid was substantially increased in the MGLH (1.29) and MGMH (1.24) designs, shifting the operating ranges of these muscles to the descending portions of their F-L curves, whereas the LGMH design maintained a resting deltoid fiber length (1.14) and operating range similar to the native shoulder. All RSA designs demonstrated a decrease in the native supraspinatus moment arm in early abduction, with the largest decrease in the MGLH design (-59%) and minimal decrease in the LGMH design (-14%). The supraspinatus operated on the ascending limb of its F-L curve in the native shoulder and remained on this portion of the F-L curve for all RSA designs. CONCLUSION: Although the MGLH design maximizes the abduction moment arm for the anterior and middle deltoid, overlengthening of the muscle may compromise deltoid muscle force production by forcing the muscle to operate on the descending portion of its F-L curve. In contrast, the LGMH design increases the abduction moment arm for the anterior and middle deltoid more modestly while allowing the muscle to operate near the plateau of its F-L curve and maximizing its force-producing potential.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Humanos , Ombro/cirurgia , Fenômenos Biomecânicos , Articulação do Ombro/cirurgia , Articulação do Ombro/fisiologia , Fibras Musculares Esqueléticas , Amplitude de Movimento Articular/fisiologia
5.
Med Sci Sports Exerc ; 55(8): 1434-1444, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989530

RESUMO

PURPOSE: A key determinant of long jump performance is the ability to increase the vertical velocity of the center of mass (COM) while minimizing the loss in forward velocity (running speed) during the take-off phase, but exactly how this occurs is not fully understood. We combined a three-dimensional musculoskeletal model of the body with dynamic optimization theory to simulate the biomechanics of the long jump take-off and determine the contributions of the individual leg muscles to jump performance. METHODS: The body was modeled as a 29-degree-of-freedom skeleton actuated by a combination of muscles and net joint torques. A dynamic optimization problem was solved to reproduce full-body motion and ground-force data recorded from experienced subelite jumpers. The optimization solution then was analyzed to determine each muscle's contribution to the ground-force impulse and hence the change in velocity of the COM during the take-off phase. RESULTS: The hip, knee, and ankle extensors dominated the change in velocity of the COM during take-off. Vasti (VAS) generated the highest support impulse and contributed one-third (33%) of the increase in vertical COM velocity generated by all the muscles. Soleus (SOL) and gluteus maximus (GMAX) also developed substantial support impulses and contributed 24% and 16% of the increase in vertical COM velocity, respectively. VAS also generated the highest braking impulse and contributed approximately one-half (55%) of the loss in forward COM velocity generated by all the muscles, whereas SOL and GMAX made much smaller contributions (12% and 7%, respectively). CONCLUSIONS: VAS, SOL, and GMAX contributed nearly three-quarters (73%) of the increase in vertical COM velocity at take-off, suggesting that these muscles ought to be prioritized in strength training programs aimed at improving long jump performance.


Assuntos
Músculo Esquelético , Corrida , Humanos , Músculo Esquelético/fisiologia , Perna (Membro)/fisiologia , Extremidade Inferior/fisiologia , Articulação do Joelho/fisiologia , Fenômenos Biomecânicos
6.
J Orthop Res ; 41(6): 1217-1227, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36317847

RESUMO

The aim of this randomized controlled trial was to measure and compare six-degree-of-freedom (6-DOF) knee joint motion of three total knee arthroplasty (TKA) implant designs across a range of daily activities. Seventy-five TKA patients were recruited to this study and randomly assigned a posterior-stabilized (PS), cruciate-retaining (CR), or medial-stabilized (MS) implant. Six months after surgery, patients performed five activities of daily living: level walking, step-up, step-down, sit-to-stand, and stand-to-sit. Mobile biplane X-ray imaging was used to measure 6-DOF knee kinematics and the center of rotation of the knee in the transverse plane for each activity. Mean 6-DOF knee kinematics were consistently similar for PS and CR, whereas MS was more externally rotated and abducted, and lateral shift was lower across all activities. Peak-to-peak anterior drawer for MS was also significantly lower during walking, step-up, and step-down (p < 0.017). The center of rotation of the knee in the transverse plane was located on the medial side for MS, whereas PS and CR rotated about the lateral compartment or close to the tibial origin. The kinematic function of MS was more similar to that of the healthy knee than PS and CR based on reduced paradoxical anterior translation at low flexion angles and a transverse center of rotation located in the medial compartment. Overall, 6-DOF knee joint motion for PS and CR were similar across all daily activities, whereas that measured for MS was appreciably different. The kinematic patterns observed for MS reflects a highly conforming medial articulation in the MS design.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Humanos , Fenômenos Biomecânicos , Atividades Cotidianas , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Artroplastia do Joelho/métodos , Amplitude de Movimento Articular
7.
J Mech Behav Biomed Mater ; 138: 105621, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549248

RESUMO

Designing weight-bearing exercises for patients with lower-limb bone fractures is challenging and requires a systematic approach that accounts for patient-specific loading conditions. However, 'trial-and-error' approaches are commonplace in clinical settings due to the lack of a fundamental understanding of the effect of weight-bearing exercises on the bone healing process. Whilst computational modelling has the potential to assist clinicians in designing effective patient-specific weight-bearing exercises, current models do not explicitly account for the effects of muscle loading, which could play an important role in mediating the mechanical microenvironment of a fracture site. We combined a fracture healing model involving a tibial fracture stabilised with a locking compression plate (LCP) with a detailed musculoskeletal model of the lower limb to determine interfragmentary strains in the vicinity of the fracture site during both full weight-bearing (100% body weight) and partial weight-bearing (50% body weight) standing. We found that muscle loading significantly altered model predictions of interfragmentary strains. For a fractured bone with a standard LCP configuration (bone-plate distance = 2 mm, working length = 30 mm) subject to full weight-bearing, the predicted strains at the near and far cortices were 23% and 11% higher when muscle loading was included compared to the case when muscle loading was omitted. The knee and ankle muscles accounted for 38% of the contact force exerted at the knee joint during quiet standing and contributed significantly to the strains calculated at the fracture site. Thus, models of bone fracture healing ought to account explicitly for the effects of muscle loading. Furthermore, the study indicated that LCP configuration parameters play a crucial role in influencing the fracture site microenvironment. The results highlighted the dominance of working length over bone-plate distance in controlling the flexibility of fracture sites stabilised with LCP devices.


Assuntos
Consolidação da Fratura , Fraturas da Tíbia , Humanos , Consolidação da Fratura/fisiologia , Placas Ósseas , Músculos , Extremidade Inferior , Fixação Interna de Fraturas/métodos
8.
Ann Biomed Eng ; 51(3): 493-505, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36085332

RESUMO

Six kinematic parameters are needed to fully describe three-dimensional (3D) bone motion at a joint. At the knee, the relative movements of the femur and tibia are often represented by a 1-degree-of-freedom (1-DOF) model with a single flexion-extension axis or a 2-DOF model comprising a flexion-extension axis and an internal-external rotation axis. The primary aim of this study was to determine the accuracy with which 1-DOF and 2-DOF models predict the 3D movements of the femur, tibia and patella during daily activities. Each model was created by fitting polynomial functions to 3D tibiofemoral (TF) and patellofemoral (PF) kinematic data recorded from 10 healthy individuals performing 6 functional activities. Model cross-validation analyses showed that the 2-DOF model predicted 3D knee kinematics more accurately than the 1-DOF model. At the TF joint, mean root-mean-square (RMS) errors across all activities and all participants were 3.4°|mm (deg or mm) for the 1-DOF model and 2.4°|mm for the 2-DOF model. At the PF joint, mean RMS errors were 4.0°|mm and 3.9°|mm for the 1-DOF and 2-DOF models, respectively. These results indicate that a 2-DOF model with two rotations as inputs may be used with confidence to predict the full 3D motion of the knee-joint complex.


Assuntos
Articulação Patelofemoral , Humanos , Amplitude de Movimento Articular , Articulação do Joelho , Joelho , Fêmur , Tíbia , Fenômenos Biomecânicos
9.
Gait Posture ; 98: 330-336, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36274470

RESUMO

BACKGROUND: The ability of the quadriceps muscles to extend the knee depends on the moment arm of the knee-extensor mechanism, which is described by the moment arm of the patellar tendon at the knee. The knee-extensor moment may be altered by a change in quadriceps force, a change in the patellar tendon moment arm (PTMA), or both. A change in quadriceps muscle strength after anterior-cruciate-ligament-reconstruction (ACLR) surgery is well documented, however, there is limited knowledge about how this procedure affects the PTMA. RESEARCH QUESTION: Does ACLR surgery alter the moment arm of the knee-extensor mechanism during gait? METHODS: We measured the PTMA in both the ACLR knee and the uninjured contralateral knee in 10 young active individuals after unilateral ACLR surgery. Mobile biplane X-ray imaging was used to measure the three-dimensional positions of the femur, tibia and patella during level walking and downhill walking over ground. The PTMA was found from the location of the instantaneous axis of rotation at the knee and the line-of-action of the patellar tendon. RESULTS: There was a small but statistically significant difference in the mean PTMA calculated over one cycle of level walking between the ACLR knee and the contralateral knee, with the mean PTMA in the ACLR knee being 1.5 mm larger (p < 0.01). In downhill walking, statistically significant differences were found in the range 15°- 25° of knee flexion, where the PTMA was 4.7 mm larger in the ACLR knee compared to the contralateral knee (p < 0.01). SIGNIFICANCE: Significant differences were evident in the mean PTMA between the ACLR knee and the contralateral knee in both activities, however, the magnitudes of these differences were relatively small (range: 3-10%), indicating that ACLR surgery successfully restores the moment arm of the knee-extensor mechanism during dynamic activity.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Ligamento Patelar , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Articulação do Joelho/fisiologia , Marcha/fisiologia , Ligamento Patelar/cirurgia , Fenômenos Biomecânicos
10.
J Rehabil Med ; 54: jrm00346, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36264132

RESUMO

OBJECTIVE: To investigate differences in metabolic cost and gross mechanical efficiency of a novel handlebased wheelchair propulsion device and to compare its performance with conventional push-rim propulsion. DESIGN: Double-group comparative study between 2 different propulsion methods. PARTICIPANTS: Eight paraplegic individuals and 10 non-disabled persons. METHODS: Participants performed the same exercise using a push-rim device and the novel handle-based device on a wheelchair- based test rig. The exercise consisted of a combined submaximal and maximal test. Power output, oxygen uptake, ventilation, respiratory exchange ratio and heart rate were recorded continuously during the tests. Analysis of variance was performed to determine the effects of group, mode and on power output. RESULTS: Submaximal exercise resulted in a higher efficiency for the novel device and significant main effects of propulsion mode on all investigated parameters, except heart rate. On the respiratory exchange ratio, a significant interaction effect was found for both mode and group. The maximal exercise resulted in a higher peak power output and lower peak heart rate during propulsion using the handle-based device. A significant main effect on mode for mean peak power output, ventilation and heart rate was also observed. CONCLUSION: Wheelchair propulsion using the handle-based device resulted in lower physical responses and higher mechanical efficiency, suggesting that this novel design may be well suited for indoor use, thereby offering an attractive alternative to pushrim wheelchairs.


Assuntos
Cadeiras de Rodas , Humanos , Frequência Cardíaca , Exercício Físico/fisiologia , Respiração , Fenômenos Biomecânicos
12.
Med Sci Sports Exerc ; 54(11): 1961-1972, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736543

RESUMO

PURPOSE: We combined a full-body musculoskeletal model with dynamic optimization theory to predict the biomechanics of maximum-speed sprinting and evaluate the effects of changes in muscle-tendon properties on sprint performance. METHODS: The body was modeled as a three-dimensional skeleton actuated by 86 muscle-tendon units. A simulation of jogging was used as an initial guess to generate a predictive dynamic optimization solution for maximum-speed sprinting. Nominal values of lower-limb muscle strength, muscle fascicle length, muscle intrinsic maximum shortening velocity (fiber-type composition), and tendon compliance were then altered incrementally to study the relative influence of each property on sprint performance. RESULTS: Model-predicted patterns of full-body motion, ground forces, and muscle activations were in general agreement with experimental data recorded for maximum-effort sprinting. Maximum sprinting speed was 1.3 times more sensitive to a change in muscle strength compared with the same change in muscle fascicle length, 2.0 times more sensitive to a change in muscle fascicle length compared with the same change in muscle intrinsic maximum shortening velocity, and 9.1 times more sensitive to a change in muscle intrinsic maximum shortening velocity compared with the same change in tendon compliance. A 10% increase in muscle strength increased maximum sprinting speed by 5.9%, whereas increasing muscle fascicle length, muscle intrinsic maximum shortening velocity, and tendon compliance by 10% increased maximum sprinting speed by 4.7%, 2.4%, and 0.3%, respectively. CONCLUSIONS: Sprint performance was most sensitive to changes in muscle strength and least affected by changes in tendon compliance. Sprint performance was also more heavily influenced by changes in muscle fascicle length than muscle intrinsic maximum shortening velocity. These results could inform training methods aimed at optimizing performance in elite sprinters.


Assuntos
Corrida , Fenômenos Biomecânicos , Humanos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Tendões/fisiologia
13.
Gait Posture ; 94: 124-130, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305479

RESUMO

BACKGROUND: Previous studies have compared the functional roles of the individual lower-limb muscles when healthy young and older adults walk at their self-selected speeds. No age-group differences were observed in ankle muscle forces and ankle muscle contributions to support and progression. However, older adults displayed higher gluteus maximus (hip extensor) muscle forces and greater contributions to support during early stance. There are no data that describe the functions of the individual lower-limb muscles in healthy older adults for walking at speeds other than the self-selected speed. RESEARCH QUESTION: How does walking speed affect the functional roles of the individual lower-limb muscles in healthy older adults? METHODS: Three-dimensional gait data were recorded for 10 healthy young and 10 healthy older adults walking at slow, normal, and fast speeds (0.7 m/s, 1.4 m/s, and 1.7 m/s, respectively). Both groups walked at the same speed at each condition. The experimental data were combined with a full-body musculoskeletal model to calculate and compare muscle forces and muscle contributions to the vertical, fore-aft, and mediolateral ground reaction forces (support, progression, and balance, respectively) in both groups. RESULTS: Lower-limb muscle function was similar in young and older adults when both groups walked at the same speed at each condition. The same five muscles - gluteus maximus, gluteus medius, vasti, gastrocnemius, and soleus - contributed most significantly to support, progression, and balance in both groups at all speeds. However, gluteus maximus generated greater support and braking forces during early stance and gastrocnemius contributed less to forward propulsion during late stance at all speeds in the older group. SIGNIFICANCE: These results provide further insight into the functional roles of the individual lower-limb muscles of older adults during walking and could inform the design of exercise programs aimed at improving support and balance in those at risk of falling.


Assuntos
Modelos Biológicos , Velocidade de Caminhada , Idoso , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Músculo Esquelético/fisiologia , Caminhada/fisiologia
14.
J Orthop Res ; 40(8): 1756-1769, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878691

RESUMO

We combined mobile biplane X-ray imaging and magnetic resonance imaging to measure the regions of articular cartilage contact and cartilage thickness at the tibiofemoral and patellofemoral joints during six functional activities: standing, level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weight-bearing) knee flexion. The contact centers traced similar paths on the medial and lateral femoral condyles, femoral trochlea, and patellar facet in all activities while their locations on the tibial plateau were more varied. The translations of the contact centers on the femur and patella were tightly coupled to the tibiofemoral flexion angle in all activities (r2 > 0.95) whereas those on the tibia were only moderately related to the flexion angle (r2 > 0.62). The regions of contacting cartilage were significantly thicker than the regions of non-contacting cartilage on the patella, femoral trochlea, and the medial and lateral tibial plateaus in all activities (p < 0.001). There were no significant differences in thickness between contacting and non-contacting cartilage on the medial and lateral femoral condyles in all activities, except open-chain knee flexion. Our results provide partial support for the proposition that cartilage thickness is adapted to joint load and do not exclude the possibility that other factors, such as joint congruence, also play a role in regulating the structure and organization of healthy cartilage. The data obtained in this study may serve as a guide when evaluating articular contact motion in osteoarthritic and reconstructed knees.


Assuntos
Cartilagem Articular , Articulação do Joelho , Fenômenos Biomecânicos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/fisiologia , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Humanos , Joelho , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Imageamento por Ressonância Magnética , Patela/fisiologia , Amplitude de Movimento Articular/fisiologia , Tíbia/diagnóstico por imagem
15.
Artigo em Inglês | MEDLINE | ID: mdl-34403347

RESUMO

Push-rim wheelchair propulsion frequently causes severe upper limb injuries in people relying on the wheelchair for ambulation. To address this problem, we developed a novel handle-based wheelchair propulsion method that follows a cyclic motion within ergonomic joint ranges of motion. The aim of this study was to measure hand propulsion forces, joint excursions and net joint torques for this novel propulsion device and to compare its performance against traditional push-rim wheelchair propulsion. We hypothesized that under similar conditions, joint excursions of this novel handle-based device will remain within their ergonomic range and that the effectiveness of the propulsion forces will be higher, leading to lower average propulsion forces compared to push-rim propulsion and reducing the risk of injury. Eight paraplegic subjects propelled the new device at two different loads on a custom-made wheelchair-based test rig. Video motion capture and force sensors were used to monitor shoulder and wrist joint kinematics and kinetics. Shoulder and wrist loads were calculated using a modified upper-extremity Wheelchair Propulsion Model available in OpenSim. The results show that with this novel propulsion device joint excursions are within their recommended ergonomic ranges, resulting in a reduced range of motion of up to 30% at the shoulder and up to 80% at the wrist, while average resultant peak forces were reduced by up to 20% compared to push-rim propulsion. Furthermore, the lower net torques at both the shoulder and wrist demonstrate the potential of this novel propulsion system to reduce the risk of upper-extremity injuries.


Assuntos
Articulação do Ombro , Cadeiras de Rodas , Fenômenos Biomecânicos , Mãos , Humanos , Músculo Esquelético , Articulação do Punho
16.
Scand J Med Sci Sports ; 31(10): 1882-1896, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34270824

RESUMO

We sought to provide a more comprehensive understanding of how the individual leg muscles act synergistically to generate a ground force impulse and maximize the change in forward momentum of the body during accelerated sprinting. We combined musculoskeletal modelling with gait data to simulate the majority of the acceleration phase (19 foot contacts) of a maximal sprint over ground. Individual muscle contributions to the ground force impulse were found by evaluating each muscle's contribution to the vertical and fore-aft components of the ground force (termed "supporter" and "accelerator/brake," respectively). The ankle plantarflexors played a major role in achieving maximal-effort accelerated sprinting. Soleus acted primarily as a supporter by generating a large fraction of the upward impulse at each step whereas gastrocnemius contributed appreciably to the propulsive and upward impulses and functioned as both accelerator and supporter. The primary role of the vasti was to deliver an upward impulse to the body (supporter), but these muscles also acted as a brake by retarding forward momentum. The hamstrings and gluteus medius functioned primarily as accelerators. Gluteus maximus was neither an accelerator nor supporter as it functioned mainly to decelerate the swinging leg in preparation for foot contact at the next step. Fundamental knowledge of lower-limb muscle function during maximum acceleration sprinting is of interest to coaches endeavoring to optimize sprint performance in elite athletes as well as sports medicine clinicians aiming to improve injury prevention and rehabilitation practices.


Assuntos
Marcha/fisiologia , Extremidade Inferior/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Aceleração , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
17.
J Biomech ; 123: 110484, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34062347

RESUMO

We measured the moment arm of the knee-extensor mechanism as ten healthy young individuals performed six functional activities: level walking, downhill walking, stair ascent, stair descent, open-chain (non-weight-bearing) knee flexion, and open-chain knee extension. The moment arm of the knee-extensor mechanism was described by the moment arm of the patellar-tendon force, which acts to rotate the tibia about the instantaneous axis of rotation (screw axis) of the knee. A mobile biplane X-ray imaging system enabled simultaneous measurements of the three-dimensional movements of the femur, tibia and patella during each activity, from which the position and orientation of the screw axis and the patellar-tendon moment arm (PTMA) were determined. Mean PTMA across all activities and all participants remained nearly constant (~46 mm) from 0° to 70° of knee flexion and decreased by no more than 20% at higher flexion angles. The magnitude of the PTMA varied more substantially across individuals than across activities, indicating that the moment arm is more heavily influenced by differences in knee-joint geometry than muscle loading. Hence, PTMA measurements obtained for a given activity performed by one individual may be used with good confidence to describe the PTMA for any other activity performed by the same individual. Caution is advised when using PTMA measurements obtained from one individual to describe the moment arm in another individual even once the data are normalized by knee bone size, as the PTMA varied by as much as 13% from the mean across individuals.


Assuntos
Patela , Ligamento Patelar , Fenômenos Biomecânicos , Fêmur , Humanos , Articulação do Joelho , Amplitude de Movimento Articular
18.
Comput Methods Biomech Biomed Engin ; 24(4): 349-357, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32940060

RESUMO

The aim of this study was to develop a generic musculoskeletal model of a healthy 10-year-old child and examine the effects of geometric scaling on the calculated values of lower-limb muscle forces during gait. Subject-specific musculoskeletal models of five healthy children were developed from in vivo MRI data, and these models were subsequently used to create a generic juvenile (GJ) model. Calculations of lower-limb muscle forces for normal walking obtained from two scaled-generic versions of the juvenile model (SGJ1 and SGJ2) were evaluated against corresponding results derived from an MRI-based model of one subject (SSJ1). The SGJ1 and SGJ2 models were created by scaling the GJ model using gait marker positions and joint centre locations derived from MRI imaging, respectively. Differences in the calculated values of peak isometric muscle forces and muscle moment arms between the scaled-generic models and MRI-based model were relatively small. Peak isometric muscle forces calculated for SGJ1 and SGJ2 were respectively 2.2% and 3.5% lower than those obtained for SSJ1. Model-predicted muscle forces for SGJ2 agreed more closely with calculations obtained from SSJ1 than corresponding results derived from SGJ1. These results suggest that accurate estimates of muscle forces during gait may be obtained by scaling generic juvenile models based on joint centre locations. The generic juvenile model developed in this study may be used as a template for creating subject-specific musculoskeletal models of normally-developing children in studies aimed at describing lower-limb muscle function during gait.


Assuntos
Marcha/fisiologia , Extremidade Inferior/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos/fisiologia , Peso Corporal/fisiologia , Criança , Feminino , Humanos , Contração Isométrica/fisiologia , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/diagnóstico por imagem
19.
Ann Biomed Eng ; 49(4): 1183-1198, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33094419

RESUMO

The purpose of this study was to measure the three-dimensional movements of the femur, tibia and patella in healthy young people during activities of daily living. A mobile biplane X-ray imaging system was used to obtain simultaneous measurements of six-degree-of-freedom (6-DOF) tibiofemoral and patellofemoral kinematics and femoral condylar motion in ten participants during standing, level walking, downhill walking, stair ascent, stair descent and open-chain (non-weightbearing) knee flexion. Seven of the eleven secondary motions at the knee-three translations at the tibiofemoral joint, three translations at the patellofemoral joint, and patellar flexion-were coupled to the tibiofemoral flexion angle (r2 ≥ 0.71). Tibial internal-external rotation, tibial abduction-adduction, patellar rotation, and patellar tilt were each weakly related to the tibiofemoral flexion angle (r2 ≤ 0.45). The displacements of the femoral condyles were also coupled to the tibiofemoral flexion angle (r2 ≥ 0.70), with the lateral condyle translating further on the tibial plateau than the medial condyle. The center of rotation of the tibiofemoral joint in the transverse plane was located on the medial side in all activities. These findings expand our understanding of the kinematic function of the healthy knee and may be relevant to a range of applications in biomechanics, including the design of prosthetic knee implants and the development of knee models for use in full-body simulations of movement.


Assuntos
Atividades Cotidianas , Articulação do Joelho/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Fêmur/fisiologia , Humanos , Masculino , Patela/fisiologia , Posição Ortostática , Tíbia/fisiologia , Caminhada/fisiologia , Adulto Jovem
20.
Ann Biomed Eng ; 48(12): 2821-2835, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33200262

RESUMO

We combined computational modelling with experimental gait data to describe and explain load distribution across the medial and lateral facets of the patella during normal walking. The body was modelled as a 13-segment, 32-degree-of-freedom (DOF) skeleton actuated by 80 muscles. The knee was represented as a 3-body, 12-DOF mechanical system with deformable articular cartilage surfaces at the tibiofemoral (TF) and patellofemoral (PF) joints. Passive responses of the knee model to 100 N anterior-posterior drawer and 5 Nm axial torque tests were consistent with cadaver data reported in the literature. Trajectories of 6-DOF TF and PF joint motion and articular joint contact calculated for walking were also consistent with measurements obtained from biplane X-ray imaging. The force acting on the lateral patellar facet was considerably higher than that on the medial facet throughout the gait cycle. The vastus medialis, vastus lateralis and patellar tendon forces contributed substantially to the first peak in the PF contact force during stance whereas all three portions of the vasti and rectus femoris were responsible for the second peak during swing. A higher lateral patellar contact force was caused mainly by the laterally-directed shear force applied by the quadriceps muscles, especially the vastus lateralis, intermedius and rectus femoris. A better understanding of the contributions of the individual knee muscles to load distribution in the PF compartment may lead to improved surgical and physiotherapy methods to treat PF disorders.


Assuntos
Articulação Patelofemoral/fisiologia , Caminhada/fisiologia , Adulto , Cadáver , Cartilagem Articular/fisiologia , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Biológicos , Músculo Quadríceps/fisiologia , Reprodutibilidade dos Testes , Suporte de Carga , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA