Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Heliyon ; 10(10): e31059, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803888

RESUMO

This study monitored the process and investigated the quality of compost obtained from different biomasses. Five blends of agri-food waste were composted by a laboratory pilot plant named COMPOSTER, that is designed to optimize biodegradation, and produce compost efficiently. The COMPOSTER consists of two 35-liter nearly adiabatic, aerated bioreactors that simulate an industrial process involving the typical sequence of mesophilic-thermophilic-mesophilic phases. It continuously monitors and records temperature, internal pressure, and biomass weight, while controlling and quantifying oxygen consumption and carbon dioxide emissions resulting from aerobic biodegradation. All composts were characterized for their main chemical, physical, and molecular features, as well as their suppressiveness against Fusarium oxysporum f.sp. lycopersici (FOL), tested on tomato seedlings. Optimized biodegradation yielded 50-60 % mature compost with a cumulative oxygen consumption ranging from 282 to 456 gO2 per kg of dry matter, with peaks of 2.55 gO2 per kg of volatile solids per hour, and carbon dioxide emissions of 22-36 % of the initial carbon content, with peaks of 5.89 g CO2 per kg of volatile solids per hour. Blends containing more ligno-cellulosic ingredients showed higher yields and lower CO2 emissions. Most of the nitrogen present initially was retained in the final compost; indeed, all mixtures exhibited an apparent nitrogen concentration increase due to carbon loss. Composting determined deep modifications in the molecular structure of the organic matter. 13C CPMAS-NMR and off-line thermochemolysis GC-MS analyses highlighted decomposition degree of polysaccharides and peptidic moieties, selective preservation of aliphatic and aromatic recalcitrant compounds, and optimal ongoing humification. All composts were non-phytotoxic, except for that including pepper crop residues, and all resulted rich in macro- and micro-elements for plant nutrition and proved to be active in controlling FOL disease. Compost comprising 81.2 % tomato crop waste exhibited the best growth performance and pathogen control on tomato. Mature, non-phytotoxic, nutrient-rich, and suppressive composts represent promising by-products that can be successfully recycled in agriculture, including high-value applications, leading to lower use of fertilizers and pesticides.

2.
Biology (Basel) ; 12(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37372075

RESUMO

Dittrichia viscosa (L.) Greuter subsp. viscosa (Asteraceae) is a perennial species naturally distributed in arid and marginal areas whose agroecological cultivation could be a useful innovation to produce quality biomass to extract phenolic-rich phytochemical blends. Here, biomass-yield trends were profiled at different growth stages under direct cropping, and inflorescences, leaves, and stems were submitted to water extraction and hydrodistillation. Then, four extracts were investigated for their biological activities in invitro and in planta assays. Extracts inhibited cress (Lepidium sativum)- and radish (Raphanus sativus)-seed germination and root elongation. All samples showed dose-dependent antifungal activity in the plate experiments, inhibiting up to 65% of the growth of the fungal pathogen Alternaria alternata, a leaf-spot disease agent of baby spinach (Spinacea oleracea). However, only the extracts from dried green parts and fresh inflorescences at the highest concentration significantly reduced (54%) the extent of Alternaria necrosis on baby spinach. UHPLC-HRMS/MS analysis revealed that the main specialized metabolites of the extracts are caffeoyl quinic acids, methoxylated flavonoids, sesquiterpene compounds such as tomentosin, and dicarboxylic acids, which may explain the observed bioactivity. Plant extracts obtained through sustainable methodology can be effective in biological agricultural applications.

3.
Plants (Basel) ; 12(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111839

RESUMO

Cultivation of wild rocket [Diplotaxis tenuifolia (L.) D.C.] as a baby-leaf vegetable for the high-convenience food chain is constantly growing due to its nutritional and taste qualities. As is well known, these crops are particularly exposed to soil-borne fungal diseases and need to be effectively protected. At present, wild rocket disease management is performed by using permitted synthetic fungicides or through the application of agro-ecological and biological methods that must be optimized. In this regard, the implementation of innovative digital-based technologies, such as infrared thermography (IT), as supporting systems to decision-making processes is welcome. In this work, leaves belonging to wild rocket plants inoculated with the soil-borne pathogens Rhizoctonia solani Kühn and Sclerotinia sclerotiorum (Lib.) de Bary were analyzed and monitored by both active and passive thermographic methods and compared with visual detection. A comparison between the thermal analysis carried out in both medium (MWIR)- and long (LWIR)-wave infrared was made and discussed. The results achieved highlight how the monitoring based on the use of IT is promising for carrying out an early detection of the rot diseases induced by the investigated pathogens, allowing their detection in 3-6 days before the canopy is completely wilted. Active thermal imaging has the potential to detect early soil-borne rotting diseases.

4.
Plant Methods ; 18(1): 45, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366940

RESUMO

BACKGROUND: Wild rocket (Diplotaxis tenuifolia) is prone to soil-borne stresses under intensive cultivation systems devoted to ready-to-eat salad chain, increasing needs for external inputs. Early detection of the abiotic and biotic stresses by using digital reflectance-based probes may allow optimization and enhance performances of the mitigation strategies. METHODS: Hyperspectral image analysis was applied to D. tenuifolia potted plants subjected, in a greenhouse experiment, to five treatments for one week: a control treatment watered to 100% water holding capacity, two biotic stresses: Fusarium wilting and Rhizoctonia rotting, and two abiotic stresses: water deficit and salinity. Leaf hyperspectral fingerprints were submitted to an artificial intelligence pipeline for training and validating image-based classification models able to work in the stress range. Spectral investigation was corroborated by pertaining physiological parameters. RESULTS: Water status was mainly affected by water deficit treatment, followed by fungal diseases, while salinity did not change water relations of wild rocket plants compared to control treatment. Biotic stresses triggered discoloration in plants just in a week after application of the treatments, as evidenced by the colour space coordinates and pigment contents values. Some vegetation indices, calculated on the bases of the reflectance data, targeted on plant vitality and chlorophyll content, healthiness, and carotenoid content, agreed with the patterns of variations observed for the physiological parameters. Artificial neural network helped selection of VIS (492-504, 540-568 and 712-720 nm) and NIR (855, 900-908 and 970 nm) bands, whose read reflectance contributed to discriminate stresses by imaging. CONCLUSIONS: This study provided significative spectral information linked to the assessed stresses, allowing the identification of narrowed spectral regions and single wavelengths due to changes in photosynthetically active pigments and in water status revealing the etiological cause.

5.
Sci Rep ; 12(1): 5098, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332172

RESUMO

Wild rocket (Diplotaxis tenuifolia, Brassicaceae) is a baby-leaf vegetable crop of high economic interest, used in ready-to-eat minimally processed salads, with an appreciated taste and nutraceutical features. Disease management is key to achieving the sustainability of the entire production chain in intensive systems, where synthetic fungicides are limited or not permitted. In this context, soil-borne pathologies, much feared by growers, are becoming a real emergency. Digital screening of green beds can be implemented in order to optimize the use of sustainable means. The current study used a high-resolution hyperspectral array (spectroscopy at 350-2500 nm) to attempt to follow the progression of symptoms of Rhizoctonia, Sclerotinia, and Sclerotium disease across four different severity levels. A Random Forest machine learning model reduced dimensions of the training big dataset allowing to compute de novo vegetation indices specifically informative about canopy decay caused by all basal pathogenic attacks. Their transferability was also tested on the canopy dataset, which was useful for assessing the health status of wild rocket plants. Indeed, the progression of symptoms associated with soil-borne pathogens is closely related to the reduction of leaf absorbance of the canopy in certain ranges of visible and shortwave infrared spectral regions sensitive to reduction of chlorophyll and other pigments as well as to modifications of water content and turgor.


Assuntos
Brassicaceae , Saladas , Brassicaceae/química , Folhas de Planta/química , Solo , Verduras
6.
Plants (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34961046

RESUMO

Baby leaf wild rocket cropping systems feeding the high convenience salad chain are prone to a set of disease agents that require management measures compatible with the sustainability-own features of the ready-to-eat food segment. In this light, bio-based disease resistance inducers able to elicit the plant's defense mechanism(s) against a wide-spectrum of pathogens are proposed as safe and effective remedies as alternatives to synthetic fungicides, to be, however, implemented under practical field applications. Hyperspectral-based proximal sensing was applied here to detect plant reflectance response to treatment of wild rocket beds with Trichoderma atroviride strain TA35, laminarin-based Vacciplant®, and Saccharomyces cerevisiae strain LAS117 cell wall extract-based Romeo®, compared to a local standard approach including synthetic fungicides (i.e., cyprodinil, fludioxonil, mandipropamid, and metalaxyl-m) and a not-treated control. Variability of the spectral information acquired in VIS-NIR-SWIR regions per treatment was explained by three principal components associated with foliar absorption of water, structural characteristics of the vegetation, and the ecophysiological plant status. Therefore, the following model-based statistical approach returned the interpretation of the inducers' performances at field scale consistent with their putative biological effects. The study stated that compost and laminarin-based treatments were the highest crop impacting ones, resulting in enhanced water intake and in stress-related pigment adjustment, respectively. Whereas plants under the conventional chemical management proved to be in better vigor and health status than the untreated control.

7.
Plants (Basel) ; 10(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918488

RESUMO

Non-thermal plasma (NTP) appears a promising strategy for supporting crop protection, increasing yield and quality, and promoting environmental safety through a decrease in chemical use. However, very few NTP applications on containerized crops are reported under operational growing conditions and in combination with eco-friendly growing media and fertigation management. In this work, NTP technology is applied to the nutrient solution used for the production of gerbera plants grown in peat or green compost, as an alternative substrate to peat, and with standard or low fertilization. NTP treatment promotes fresh leaf and flower biomass production in plants grown in peat and nutrient adsorption in those grown in both substrates, except for Fe, while decreasing dry plant matter. However, it causes a decrease in the leaf and flower biomasses of plants grown in compost, showing a substrate-dependent effect under a low fertilization regime. In general, the limitation in compost was probably caused by the high-substrate alkalinization that commonly interferes with gerbera growth. Under low fertilization, a reduction in the photosynthetic capacity further penalizes plant growth in compost. A lower level of fertilization also decreases gerbera quality, highlighting that Ca, Mg, Mn, and Fe could be reduced with respect to standard fertilization.

8.
Front Plant Sci ; 12: 630059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763091

RESUMO

Research has been increasingly focusing on the selection of novel and effective biological control agents (BCAs) against soil-borne plant pathogens. The large-scale application of BCAs requires fast and robust screening methods for the evaluation of the efficacy of high numbers of candidates. In this context, the digital technologies can be applied not only for early disease detection but also for rapid performance analyses of BCAs. The present study investigates the ability of different Trichoderma spp. to contain the development of main baby-leaf vegetable pathogens and applies functional plant imaging to select the best performing antagonists against multiple pathosystems. Specifically, sixteen different Trichoderma spp. strains were characterized both in vivo and in vitro for their ability to contain R. solani, S. sclerotiorum and S. rolfsii development. All Trichoderma spp. showed, in vitro significant radial growth inhibition of the target phytopathogens. Furthermore, biocontrol trials were performed on wild rocket, green and red baby lettuces infected, respectively, with R. solani, S. sclerotiorum and S. rolfsii. The plant status was monitored by using hyperspectral imaging. Two strains, Tl35 and Ta56, belonging to T. longibrachiatum and T. atroviride species, significantly reduced disease incidence and severity (DI and DSI) in the three pathosystems. Vegetation indices, calculated on the hyperspectral data extracted from the images of plant-Trichoderma-pathogen interaction, proved to be suitable to refer about the plant health status. Four of them (OSAVI, SAVI, TSAVI and TVI) were found informative for all the pathosystems analyzed, resulting closely correlated to DSI according to significant changes in the spectral signatures among health, infected and bio-protected plants. Findings clearly indicate the possibility to promote sustainable disease management of crops by applying digital plant imaging as large-scale screening method of BCAs' effectiveness and precision biological control support.

9.
Biology (Basel) ; 9(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899876

RESUMO

Plants produce a huge array of secondary metabolites that play a key role in defense mechanisms against detrimental microorganisms and herbivores, and represent a suitable alternative to synthetic fungicides in sustainable agriculture. In this work, twelve crude hydroethanolic extracts derived from leaves of different potato cultivars were chemically characterized by LC/MS and their antioxidant properties were investigated in vitro. Furthermore, the biological activity against the fungal pathogen Rhizoctonia solani was evaluated both in vitro and in vivo. Extracts showed the ability to inhibit R. solani growth in vitro and significantly reduced damping-off incidence in in vivo experiments. Furthermore, R. solani mycelia exposed to the extracts showed an altered morphology (low translucency, irregular silhouette, and cytoplasmatic content coagulation) compared to the untreated control in light microscopy examination. Principal component analysis conducted on identified chemical compounds highlighted significant metabolic variations across the different extracts. In particular, those that inhibited most of the growth of the pathogen were found to be enriched in α-chaconine or α-solanine content, indicating that their biological activity is affected by the abundance of these metabolites. These results clearly indicated that plant-derived compounds represent a suitable alternative to chemicals and could lead to the development of new formulates for sustainable control of plant diseases.

10.
Antioxidants (Basel) ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604812

RESUMO

Bioactive compounds of different Campania native sweet pepper varieties were evaluated. Polyphenols ranged between 1.37 mmol g-1 and 3.42 mmol g-1, ß-carotene was abundant in the red variety "Cazzone" (7.05 µg g-1). Yellow and red varieties showed a content of ascorbic acid not inferior to 0.82 mg g-1, while in some green varieties the presence of ascorbic acid was almost inconsistent. Interrelationships between the parameters analyzed and the varieties showed that ascorbic acid could represent the factor mostly influencing the antioxidant activity. Polyphenol profile was different among the varieties, with a general prevalence of acidic phenols in yellow varieties and of flavonoids in red varieties. Principal Component Analysis, applied to ascorbic acid, total polyphenols and ß-carotene, revealed that two of the green varieties ("Friariello napoletano" and "Friariello Sigaretta") were well clustered and that the yellow variety "Corno di capra" showed similarity with the green varieties, in particular with "Friariello Nocerese". This was confirmed by the interrelationships applied to polyphenol composition, which let us to light on a clustering of several red and yellow varieties, and that mainly the yellow "Corno di capra" was closer to the green varieties of "Friariello".

11.
Waste Manag ; 95: 278-288, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351613

RESUMO

The Black Soldier Fly (Hermetia illucens (L.), Diptera: Stratiomyidae) is an insect whose larvae thrive on agro-industrial by-products. This study reports the first use of black soldier fly larvae processing residue (BSPR) as an innovative ingredient for growing media. BSPR was characterized and evaluated to partially replace commercial peat (CP) in the production of potted plants. Chemical and microbiological analysis showed the suitability of BSPR for soilless production. Hence, six growing media mixtures (CP 100% + slow acting synthetic solid fertilizer, CP 90% + BSPR 10%, CP 80% + BSPR 20%, CP 70% + BSPR 30%, CP 60% + BSPR 40% and CP 100% without fertilizer) were assessed for the production of baby leaf lettuce, basil and tomato potted plants. Using BSPR in a proportion up to 20%, all investigated crops showed values significantly greater than or comparable to those obtained using CP 100% + slow acting synthetic solid fertilizer. In general, BSPR used in a proportion up to 20% increased the crop growth of baby leaf lettuce, basil and tomato, recording a high total dry weight (+31%, compared to the total average) and the measured leaf parameters (+39% of leaf area, +14% of leaf number), without showing abiotic stresses. This study indicates that BSPR used in a proportion up to 20% might be a valid approach for soilless production of potted baby leaf lettuce, basil and tomato plants.


Assuntos
Dípteros , Simuliidae , Animais , Fertilizantes , Larva , Solo
12.
Molecules ; 24(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650628

RESUMO

Chestnut (Castanea sativa Miller.) burs (CSB) represent a solid waste produced during the edible fruit harvesting. Their usual disposal in the field increases the environmental and economic impact of the agricultural process. HPLC-UV-HRMS profiling revealed that CSB organic and aqueous extracts (CSB-M, CSB-H, CSB-A) contain several hydrolyzable tannins, mainly ellagitannins, and glycoside flavonols. Ellagic acid (EA) and chestanin are predominant components (5⁻79 and 1⁻13 mg/g dry extract, respectively). NMR analysis confirmed the chemical structures of the major constituents from CSB-M. The extracts displayed a significant scavenging activity against DPPH (EC50 12.64⁻24.94 µg/mL) and ABTS⁺ radicals (TEAC value 2.71⁻3.52 mM Trolox/mg extract). They were effective in inhibiting the mycelial growth (EC50 6.04⁻15.51 mg/mL) and spore germination (EC50 2.22⁻11.17 mg/mL) of Alternaria alternata and Fusarium solani. At the highest concentration, CSB-M was also active against Botrytis cinerea both in mycelium and spore form (EC50 64.98 and 16.33 mg/mL). The EA contributed to the antifungal activity of extracts (EC50 on spore germination 13.33⁻112.64 µg/mL). Our results can support the upgrading of chestnut burs from agricultural wastes to a resource of natural fungicides for managing fruit and vegetable diseases.


Assuntos
Fagaceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Fagaceae/metabolismo , Flavonoides/química , Flavonoides/farmacologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Metabolismo Secundário
13.
BMC Genomics ; 19(1): 27, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-29306326

RESUMO

BACKGROUND: The early phases of Diaporthe helianthi pathogenesis on sunflower are characterized by the production of phytotoxins that may play a role in host colonisation. In previous studies, phytotoxins of a polyketidic nature were isolated and purified from culture filtrates of virulent strains of D. helianthi isolated from sunflower. A highly aggressive isolate (7/96) from France contained a gene fragment of a putative nonaketide synthase (lovB) which was conserved in a virulent D. helianthi population. RESULTS: In order to investigate the role of polyketide synthases in D. helianthi 7/96, a draft genome of this isolate was examined. We were able to find and phylogenetically analyse 40 genes putatively coding for polyketide synthases (PKSs). Analysis of their domains revealed that most PKS genes of D. helianthi are reducing PKSs, whereas only eight lacked reducing domains. Most of the identified PKSs have orthologs shown to be virulence factors or genetic determinants for toxin production in other pathogenic fungi. One of the genes (DhPKS1) corresponded to the previously cloned D. helianthi lovB gene fragment and clustered with a nonribosomal peptide synthetase (NRPS) -PKS hybrid/lovastatin nonaketide like A. nidulans LovB. We used DhPKS1 as a case study and carried out its disruption through Agrobacterium-mediated transformation in the isolate 7/96. D. helianthi DhPKS1 deleted mutants were less virulent to sunflower compared to the wild type, indicating a role for this gene in the pathogenesis of the fungus. CONCLUSION: The PKS sequences analysed and reported here constitute a new genomic resource that will be useful for further research on the biology, ecology and evolution of D. helianthi and generally of fungal plant pathogens.


Assuntos
Ascomicetos/enzimologia , Helianthus/microbiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Policetídeo Sintases/metabolismo , Virulência , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , Inativação Gênica , Engenharia Genética , Genoma Fúngico , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Filogenia , Doenças das Plantas/genética , Policetídeo Sintases/antagonistas & inibidores , Policetídeo Sintases/genética
14.
Int J Food Sci Nutr ; 69(7): 824-834, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29336184

RESUMO

Common beans (Phaseolus vulgaris) are a good source of nutrients and phenolic compounds with versatile health benefits. Polyphenol-rich extracts of six ecotypes of P. vulgaris were analysed to determine their phenolic profiles and assayed in vitro for inhibitory effects on digestive enzymes relevant to carbohydrates and lipids metabolism. The extracts inhibited enzyme activities in a dose-dependent manner. IC 50 values ranged from 69 ± 1.9 to 126 ± 3.2 µg/mL and from 107.01 ± 4.5 to 184.20 ± 5.7 µg/mL, before and after cooking, for α-amylase, from 39.3 ± 4.4 to 74.13 ± 6.9 µg/mL and from 51 ± 7.7 to 122.1 ± 5.2 µg/mL for α-glucosidase and from 63.11 ± 7.5 to 103.2 ± 5.9 µg/mL and from 92.0 ± 6.3 to 128.5 ± 7.4 µg/mL for lipase. Results suggest encouraging their consumption, being natural sources of enzyme inhibitors important for type-2 diabetes and obesity prevention/control. Well-monitored in vivo studies would help to establish their beneficial effects, making them worthwhile of further consideration as functional foods.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Lipase/antagonistas & inibidores , Phaseolus/química , Polifenóis/farmacologia , alfa-Amilases/antagonistas & inibidores , Culinária , Ecótipo , Flavonoides/análise , Itália , Taninos/análise , alfa-Glucosidases
15.
Oxid Med Cell Longev ; 2016: 1398298, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28105248

RESUMO

Beans are important dietary components with versatile health benefits. We analysed the extracts of twelve ecotypes of Phaseolus vulgaris in order to determine their phenolic profiles, antioxidant activity, and the in vitro antiproliferative activity. Ultra-performance liquid chromatography with diode array detector (UPLC-DAD) admitted us to detect and quantify some known polyphenols, such as gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol. The antioxidant activity (AA) ranged from 1.568 ± 0.041 to 66.572 ± 3.197 mg necessary to inhibit the activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by 50% (EC50). The extracts, except those obtained from the nonpigmented samples, were capable of inhibiting the proliferation of the human epithelial colorectal adenocarcinoma (Caco-2) cells, human breast cancer cells MCF-7, and A549 NSCLC cell line. Cultivars differed in composition and concentration of polyphenols including anthocyanins; cooking affected the antioxidant activity only marginally. Qualitative and quantitative differences in phenolic composition between the groups of beans influenced the biological activities; on the other hand, we did not find significant differences on the biological activities within the same variety, before and after cooking.


Assuntos
Antioxidantes/química , Phaseolus/química , Extratos Vegetais/química , Polifenóis/análise , Células A549 , Antocianinas/análise , Antioxidantes/farmacologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Culinária , Ecótipo , Flavonoides/análise , Humanos , Itália , Células MCF-7 , Phaseolus/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Análise de Componente Principal
16.
Mycol Res ; 112(Pt 6): 737-46, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18515055

RESUMO

BcatrA was cloned from the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea) and sequenced. Sequence analysis revealed that BcatrA encodes a protein composed of 1562 amino acid residues displaying high similarity with various fungal ATP-binding cassette (ABC) transporters having the (NBF-TM(6))(2) topology. Expression of BcatrA is barely detectable during normal vegetative growth in liquid substrates. Transcript levels of BcatrA are enhanced in a dose- and time-dependent manner after treatment with cycloheximide or catechol, but not by a number of other drugs or fungicides, including fludioxonil, fenarimol, imazalil, and the plant defense compounds pisatin and resveratrol. Quantitative analysis of BcatrA during the synchronized infection of bean leaves revealed an overaccumulation of the gene transcript at 6, 12 and 24 h post-inoculation, suggesting an involvement of the gene in the first steps of pathogenesis. Functional analysis of BcatrA was performed by targeted gene replacement in a wild-type strain of the fungus, and by overexpression in a mutant of Saccharomyces cerevisiae carrying multiple non-functional multidrug-resistance genes. BcatrA replacement mutants did not show any significant increase in sensitivity to drugs, including inducers of BcatrA transcription, and displayed an unaltered virulence on several common host plants of B. cinerea. However, when expressed in the heterologous system, BcatrA reduced sensitivity to cycloheximide and catechol, thus indicating the ability of the BcatrA product to function as a multidrug transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Botrytis/metabolismo , Botrytis/patogenicidade , Clonagem Molecular , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Botrytis/efeitos dos fármacos , Botrytis/genética , Catecóis/farmacologia , Cicloeximida/farmacologia , Fabaceae/microbiologia , Proteínas Fúngicas/genética , Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA