Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Sci Rep ; 14(1): 8615, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616192

RESUMO

Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD), and PAD is an independent predictor of cardiovascular disorders (CVDs). Growing evidence suggests that long non-coding RNAs (lncRNAs) significantly contribute to disease development and underlying complications, particularly affecting smooth muscle cells (SMCs). So far, no study has focused on transcriptome analysis of lncRNAs in PAD patients with and without DM. Tissue samples were obtained from our Vascular Biobank. Due to the sample's heterogeneity, expression analysis of lncRNAs in whole tissue detected only ACTA2-AS1 with a 4.9-fold increase in PAD patients with DM. In contrast, transcriptomics of SMCs revealed 28 lncRNAs significantly differentially expressed between PAD with and without DM (FDR < 0.1). Sixteen lncRNAs were of unknown function, six were described in cancer, one connected with macrophages polarisation, and four were associated with CVDs, mainly with SMC function and phenotypic switch (NEAT1, MIR100HG, HIF1A-AS3, and MRI29B2CHG). The enrichment analysis detected additional lncRNAs H19, CARMN, FTX, and MEG3 linked with DM. Our study revealed several lncRNAs in diabetic PAD patients associated with the physiological function of SMCs. These lncRNAs might serve as potential therapeutic targets to improve the function of SMCs within the diseased tissue and, thus, the clinical outcome.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Doença Arterial Periférica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Doença Arterial Periférica/genética , Miócitos de Músculo Liso , Perfilação da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38632694

RESUMO

BACKGROUND: Lean body mass (LBM) and the functional capacity of cardiovascular (CV) and respiratory systems constitute a female-specific relationship in European-American individuals. Whether this recent finding be extrapolated to the world's largest ethnic group, that is, Hans Chinese (HC, a population characterized by low LBM), is unknown. METHODS: Healthy HC adults (n = 144, 50% ♀) closely matched by sex, age and physical activity were included. Total and regional (leg, arm and trunk) LBM and body composition were measured via dual-energy X-ray absorptiometry. Cardiac structure, stiffness, central/peripheral haemodynamics and peak O2 consumption (VO2peak) were assessed via transthoracic echocardiography and pulmonary gas analyses at rest and during exercise up to peak effort. Regression analyses determined the sex-specific relationship of LBM with cardiac and aerobic phenotypes. RESULTS: Total and regional LBM were lower and body fat percentage higher in women compared with men (P < 0.001). In both sexes, total LBM positively associated with left ventricular (LV) mass and peak volumes (r ≥ 0.33, P ≤ 0.005) and negatively with LV end-systolic and central arterial stiffness (r ≥ -0.34, P ≤ 0.004). Total LBM strongly associated with VO2peak (r ≥ 0.60, P < 0.001) and peak cardiac output (r ≥ 0.40, P < 0.001) in women and men. Among regional LBM, leg LBM prominently associated with the arterio-venous O2 difference at peak exercise in both sexes (r ≥ 0.43, P < 0.001). Adjustment by adiposity or CV risk factors did not modify the results. CONCLUSIONS: LBM independently determines internal cardiac dimensions, ventricular mass, distensibility and the capacity to deliver and consume O2 in HC adults irrespective of sex.

3.
Hypertension ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511317

RESUMO

Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.

4.
Cardiovasc Diabetol ; 23(1): 107, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553774

RESUMO

BACKGROUND: Diabetes-induced trained immunity contributes to the development of atherosclerosis and its complications. This study aimed to investigate in humans whether epigenetic signals involved in immune cell activation and inflammation are initiated in hematopoietic stem/progenitor cells (HSPCs) and transferred to differentiated progeny. METHODS AND RESULTS: High glucose (HG)-exposure of cord blood (CB)-derived HSPCs induced a senescent-associated secretory phenotype (SASP) characterized by cell proliferation lowering, ROS production, telomere shortening, up-regulation of p21 and p27genes, upregulation of NFkB-p65 transcription factor and increased secretion of the inflammatory cytokines TNFα and IL6. Chromatin immunoprecipitation assay (ChIP) of p65 promoter revealed that H3K4me1 histone mark accumulation and methyltransferase SetD7 recruitment, along with the reduction of repressive H3K9me3 histone modification, were involved in NFkB-p65 upregulation of HG-HSPCs, as confirmed by increased RNA polymerase II engagement at gene level. The differentiation of HG-HSPCs into myeloid cells generated highly responsive monocytes, mainly composed of intermediate subsets (CD14hiCD16+), that like the cells from which they derive, were characterized by SASP features and similar epigenetic patterns at the p65 promoter. The clinical relevance of our findings was confirmed in sternal BM-derived HSPCs of T2DM patients. In line with our in vitro model, T2DM HSPCs were characterized by SASP profile and SETD7 upregulation. Additionally, they generated, after myeloid differentiation, senescent monocytes mainly composed of proinflammatory intermediates (CD14hiCD16+) characterized by H3K4me1 accumulation at NFkB-p65 promoter. CONCLUSIONS: Hyperglycemia induces marked chromatin modifications in HSPCs, which, once transmitted to the cell progeny, contributes to persistent and pathogenic changes in immune cell function and composition.


Assuntos
Diabetes Mellitus Tipo 2 , Imunidade Treinada , Humanos , Fenótipo Secretor Associado à Senescência , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Epigênese Genética , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
6.
Eur Heart J ; 45(2): 89-103, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37587550

RESUMO

Convergent experimental and clinical evidence have established the pathophysiological importance of pro-inflammatory pathways in coronary artery disease. Notably, the interest in treating inflammation in patients suffering acute myocardial infarction (AMI) is now expanding from its chronic aspects to the acute setting. Few large outcome trials have proven the benefits of anti-inflammatory therapies on cardiovascular outcomes by targeting the residual inflammatory risk (RIR), i.e. the smouldering ember of low-grade inflammation persisting in the late phase after AMI. However, these studies have also taught us about potential risks of anti-inflammatory therapy after AMI, particularly related to impaired host defence. Recently, numerous smaller-scale trials have addressed the concept of targeting a deleterious flare of excessive inflammation in the early phase after AMI. Targeting different pathways and implementing various treatment regimens, those trials have met with varied degrees of success. Promising results have come from those studies intervening early on the interleukin-1 and -6 pathways. Taking lessons from such past research may inform an optimized approach to target post-AMI inflammation, tailored to spare 'The Good' (repair and defence) while treating 'The Bad' (smouldering RIR) and capturing 'The Ugly' (flaming early burst of excess inflammation in the acute phase). Key constituents of such a strategy may read as follows: select patients with large pro-inflammatory burden (i.e. large AMI); initiate treatment early (e.g. ≤12 h post-AMI); implement a precisely targeted anti-inflammatory agent; follow through with a tapering treatment regimen. This approach warrants testing in rigorous clinical trials.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/terapia , Inflamação/metabolismo , Doença da Artéria Coronariana/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
7.
Adv Biol (Weinh) ; 8(1): e2300211, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37794610

RESUMO

Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.


Assuntos
Metilação de DNA , Hepatopatia Gordurosa não Alcoólica , Humanos , Metilação de DNA/genética , Epigênese Genética , Hepatopatia Gordurosa não Alcoólica/genética , Cromatina , Inflamação/genética
8.
Cardiovasc Diabetol ; 22(1): 312, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957697

RESUMO

BACKGROUND: Metabolic cardiomyopathy (MCM), characterized by intramyocardial lipid accumulation, drives the progression to heart failure with preserved ejection fraction (HFpEF). Although evidence suggests that the mammalian silent information regulator 1 (Sirt1) orchestrates myocardial lipid metabolism, it is unknown whether its exogenous administration could avoid MCM onset. We investigated whether chronic treatment with recombinant Sirt1 (rSirt1) could halt MCM progression. METHODS: db/db mice, an established model of MCM, were supplemented with intraperitoneal rSirt1 or vehicle for 4 weeks and compared with their db/ + heterozygous littermates. At the end of treatment, cardiac function was assessed by cardiac ultrasound and left ventricular samples were collected and processed for molecular analysis. Transcriptional changes were evaluated using a custom PCR array. Lipidomic analysis was performed by mass spectrometry. H9c2 cardiomyocytes exposed to hyperglycaemia and treated with rSirt1 were used as in vitro model of MCM to investigate the ability of rSirt1 to directly target cardiomyocytes and modulate malondialdehyde levels and caspase 3 activity. Myocardial samples from diabetic and nondiabetic patients were analysed to explore Sirt1 expression levels and signaling pathways. RESULTS: rSirt1 treatment restored cardiac Sirt1 levels and preserved cardiac performance by improving left ventricular ejection fraction, fractional shortening and diastolic function (E/A ratio). In left ventricular samples from rSirt1-treated db/db mice, rSirt1 modulated the cardiac lipidome: medium and long-chain triacylglycerols, long-chain triacylglycerols, and triacylglycerols containing only saturated fatty acids were reduced, while those containing docosahexaenoic acid were increased. Mechanistically, several genes involved in lipid trafficking, metabolism and inflammation, such as Cd36, Acox3, Pparg, Ncoa3, and Ppara were downregulated by rSirt1 both in vitro and in vivo. In humans, reduced cardiac expression levels of Sirt1 were associated with higher intramyocardial triacylglycerols and PPARG-related genes. CONCLUSIONS: In the db/db mouse model of MCM, chronic exogenous rSirt1 supplementation rescued cardiac function. This was associated with a modulation of the myocardial lipidome and a downregulation of genes involved in lipid metabolism, trafficking, inflammation, and PPARG signaling. These findings were confirmed in the human diabetic myocardium. Treatments that increase Sirt1 levels may represent a promising strategy to prevent myocardial lipid abnormalities and MCM development.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Animais , Humanos , Camundongos , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/prevenção & controle , Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Lipidômica , Lipídeos , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Volume Sistólico , Triglicerídeos/metabolismo , Função Ventricular Esquerda
9.
Eur J Intern Med ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37981527

RESUMO

INTRODUCTION: Differential expression of long non-coding RNAs (lncRNAs) is a hallmark of cardiovascular aging, cerebrovascular diseases, and neurodegenerative disorders. This research article investigates the association between a panel of lncRNAs and the risk of death and ischemic stroke in a cohort of non-institutionalized elderly subjects. METHOD: A total of 361 healthy individuals aged 75 years old, prospectively recruited in the Vienna Transdanube Aging (VITA) cohort, were included. Expression of lncRNAs at baseline was assessed using quantitative polymerase chain reaction PCR with pre-amplification reaction, using 18S for normalization. The primary endpoint was all-cause mortality; the secondary endpoint was the incidence of new ischemic brain lesions. Death was assessed over a 14-year follow-up, and ischemic brain lesions were evaluated by magnetic resonance imaging (MRI) over a 90-month follow-up. Ischemic brain lesions were divided into large brain infarcts (Ø≥ 1.5 cm) or lacunes (Ø< 1.5 cm) RESULTS: The primary endpoint occurred in 53.5 % of the study population. The incidence of the secondary endpoint was 16 %, with a 3.3 % being large brain infarcts, and a 12.7 % lacunes. After adjustment for potential confounders, the lncRNA H19 predicted the incidence of the primary endpoint (HR 1.194, 95 % C.I. 1.012-1.409, p = 0.036), whereas the lncRNA NKILA was associated with lacunar stroke (HR 0.571, 95 % C.I. 0.375-0.868, p = 0.006). CONCLUSION: In a prospective cohort of non-institutionalized elderly subjects, high levels of lncRNA H19 are associated with a higher risk of death, while low levels of lncRNA NKILA predict an increased risk of lacunar stroke.

10.
J Clin Med ; 12(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37685628

RESUMO

Optimal risk assessment for primary prevention remains highly challenging. Recent registries have highlighted major discrepancies between guidelines and daily practice. Although guidelines have improved over time and provide updated risk scores, they still fail to identify a significant proportion of at-risk individuals, who then miss out on effective prevention measures until their initial ischemic events. Cardiovascular imaging is progressively assuming an increasingly pivotal role, playing a crucial part in enhancing the meticulous categorization of individuals according to their risk profiles, thus enabling the customization of precise therapeutic strategies for patients with increased cardiovascular risks. For the most part, the current approach to patients with atherosclerotic cardiovascular disease (ASCVD) is homogeneous. However, data from registries (e.g., REACH, CORONOR) and randomized clinical trials (e.g., COMPASS, FOURIER, and ODYSSEY outcomes) highlight heterogeneity in the risks of recurrent ischemic events, which are especially higher in patients with poly-vascular disease and/or multivessel coronary disease. This indicates the need for a more individualized strategy and further research to improve definitions of individual residual risk, with a view of intensifying treatments in the subgroups with very high residual risk. In this narrative review, we discuss advances in cardiovascular imaging, its current place in the guidelines, the gaps in evidence, and perspectives for primary and secondary prevention to improve risk assessment and therapeutic strategies using cardiovascular imaging.

11.
Eur J Heart Fail ; 25(11): 1947-1958, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37655676

RESUMO

AIMS: Degenerative aortic valve stenosis with preserved ejection fraction (ASpEF) and heart failure with preserved ejection fraction (HFpEF) display intriguing similarities. This study aimed to provide a non-invasive, comparative analysis of ASpEF versus HFpEF at rest and during exercise. METHODS AND RESULTS: We prospectively enrolled 148 patients with HFpEF and 150 patients with degenerative moderate-to-severe ASpEF, together with 66 age- and sex-matched healthy controls. All subjects received a comprehensive evaluation at rest and 351/364 (96%) performed a combined cardiopulmonary exercise stress echocardiography test. Patients with ASpEF eligible for transcatheter aortic valve replacement (n = 125) also performed cardiac computed tomography (CT). HFpEF and ASpEF patients showed similar demographic distribution and biohumoral profiles. Most patients with ASpEF (134/150, 89%) had severe high-gradient aortic stenosis; 6/150 (4%) had normal-flow, low-gradient ASpEF, while 10/150 (7%) had low-flow, low-gradient ASpEF. Both patient groups displayed significantly lower peak oxygen consumption (VO2 ), peak cardiac output, and peak arteriovenous oxygen difference compared to controls (all p < 0.01). ASpEF patients showed several extravalvular abnormalities at rest and during exercise, similar to HFpEF (all p < 0.01 vs. controls). Epicardial adipose tissue (EAT) thickness was significantly greater in ASpEF than HFpEF and was inversely correlated with peak VO2 in all groups. In ASpEF, EAT was directly related to echocardiography-derived disease severity and CT-derived aortic valve calcium burden. CONCLUSION: Functional capacity is similarly impaired in ASpEF and HFpEF due to both peripheral and central components. Further investigation is warranted to determine whether extravalvular alterations may affect disease progression and prognosis in ASpEF even after valve intervention, which could support the concept of ASpEF as a specific sub-phenotype of HFpEF.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Humanos , Volume Sistólico , Consumo de Oxigênio , Hemodinâmica , Teste de Esforço/métodos , Estenose da Valva Aórtica/cirurgia , Fenótipo , Tolerância ao Exercício , Função Ventricular Esquerda
12.
Front Cardiovasc Med ; 10: 1204483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522089

RESUMO

Mitochondria are cellular organelles which generate adenosine triphosphate (ATP) molecules for the maintenance of cellular energy through the oxidative phosphorylation. They also regulate a variety of cellular processes including apoptosis and metabolism. Of interest, the inner part of mitochondria-the mitochondrial matrix-contains a circular molecule of DNA (mtDNA) characterised by its own transcriptional machinery. As with genomic DNA, mtDNA may also undergo nucleotide mutations that have been shown to be responsible for mitochondrial dysfunction. During physiological aging, the mitochondrial membrane potential declines and associates with enhanced mitophagy to avoid the accumulation of damaged organelles. Moreover, if the dysfunctional mitochondria are not properly cleared, this could lead to cellular dysfunction and subsequent development of several comorbidities such as cardiovascular diseases (CVDs), diabetes, respiratory and cardiovascular diseases as well as inflammatory disorders and psychiatric diseases. As reported for genomic DNA, mtDNA is also amenable to chemical modifications, namely DNA methylation. Changes in mtDNA methylation have shown to be associated with altered transcriptional programs and mitochondrial dysfunction during aging. In addition, other epigenetic signals have been observed in mitochondria, in particular the interaction between mtDNA methylation and non-coding RNAs. Mitoepigenetic modifications are also involved in the pathogenesis of CVDs where oxygen chain disruption, mitochondrial fission, and ROS formation alter cardiac energy metabolism leading to hypertrophy, hypertension, heart failure and ischemia/reperfusion injury. In the present review, we summarize current evidence on the growing importance of epigenetic changes as modulator of mitochondrial function in aging. A better understanding of the mitochondrial epigenetic landscape may pave the way for personalized therapies to prevent age-related diseases.

14.
J Hypertens ; 41(10): 1521-1543, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382158

RESUMO

Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.


Assuntos
Artérias , Inflamação , Humanos , Doença Crônica , Microcirculação
15.
Cardiovasc Diabetol ; 22(1): 144, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349757

RESUMO

BACKGROUND: The nuclear receptor corepressor 1 (NCOR1) plays an important role in the regulation of gene expression in immunometabolic conditions by connecting chromatin-modifying enzymes, coregulators and transcription factors. NCOR1 has been shown to be involved in cardiometabolic diseases. Recently, we demonstrated that the deletion of macrophage NCOR1 aggravates atherosclerosis by promoting CD36-triggered foam cell formation via PPARG derepression. PURPOSE: Since NCOR1 modulates the function of several key regulators involved in hepatic lipid and bile acid metabolism, we hypothesized that its deletion in hepatocytes alters lipid metabolism and atherogenesis. METHODS: To test this hypothesis, we generated hepatocyte-specific Ncor1 knockout mice on a Ldlr-/- background. Besides assessing the progression of the disease in thoracoabdominal aortae en face, we analyzed hepatic cholesterol and bile acid metabolism at expression and functional levels. RESULTS: Our data demonstrate that liver-specific Ncor1 knockout mice on an atherosclerosis-prone background develop less atherosclerotic lesions than controls. Interestingly, under chow diet, plasma cholesterol levels of liver-specific Ncor1 knockout mice were slightly higher compared to control, but strongly reduced compared to control mice after feeding them an atherogenic diet for 12 weeks. Moreover, the hepatic cholesterol content was decreased in liver-specific Ncor1 knockout compared to control mice. Our mechanistic data revealed that NCOR1 reprograms the synthesis of bile acids towards the alternative pathway, which in turn reduce bile hydrophobicity and enhances fecal cholesterol excretion. CONCLUSIONS: Our data suggest that hepatic Ncor1 deletion in mice decreases atherosclerosis development by reprograming bile acid metabolism and enhancing fecal cholesterol excretion.


Assuntos
Aterosclerose , Esteróis , Camundongos , Animais , Esteróis/metabolismo , Fígado/metabolismo , Colesterol , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Camundongos Knockout , Ácidos e Sais Biliares/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
16.
iScience ; 26(5): 106593, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250320

RESUMO

Ischemic cardiomyopathy, driven by loss of cardiomyocytes and inadequate proliferative response, persists to be a major global health problem. Using a functional high-throughput screening, we assessed differential proliferative potential of 2019 miRNAs after transient hypoxia by transfecting both miR-inhibitor and miR-mimic libraries in human iPSC-CM. Whereas miR-inhibitors failed to enhance EdU uptake, overexpression of 28 miRNAs substantially induced proliferative activity in hiPSC-CM, with an overrepresentation of miRNAs belonging to the primate-specific C19MC-cluster. Two of these miRNAs, miR-515-3p and miR-519e-3p, increased markers of early and late mitosis, indicative of cell division, and substantially alter signaling pathways relevant for cardiomyocyte proliferation in hiPSC-CM.

17.
Diabetes Care ; 46(6): 1239-1244, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040472

RESUMO

OBJECTIVE: Long noncoding RNAs (lncRNAs) are involved in diabetogenesis in experimental models, yet their role in humans is unclear. We investigated whether circulating lncRNAs associate with incident type 2 diabetes in older adults. RESEARCH DESIGN AND METHODS: A preselected panel of lncRNAs was measured in serum of individuals without diabetes (n = 296) from the Vienna Transdanube Aging study, a prospective community-based cohort study. Participants were followed up over 7.5 years. A second cohort of individuals with and without type 2 diabetes (n = 90) was used to validate our findings. RESULTS: Four lncRNAs (ANRIL, MIAT, RNCR3, and PLUTO) were associated with incident type 2 diabetes and linked to hemoglobin A1c trajectories throughout the 7.5-year follow-up. Similar results (for MIAT and PLUTO also in combined analysis) were obtained in the validation cohort. CONCLUSIONS: We found a set of circulating lncRNAs that independently portends incident type 2 diabetes in older adults years before disease onset.


Assuntos
Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Humanos , Idoso , RNA Longo não Codificante/genética , Estudos de Coortes , Envelhecimento
18.
Prog Cardiovasc Dis ; 79: 2-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36889490

RESUMO

Cardiovascular disease (CVD) is a chronic non-communicable disease (NCD) and the predominant cause of morbidity and mortality worldwide. Substantial reductions in the CVD prevalence have been achieved in recent years by the attenuation of risk factors (particularly hypertension and dyslipidaemias) in primary and secondary prevention. Despite the remarkable success of lipid lowering treatments, and of statins in particular, in reducing the risk of CVD, there is still an unmet clinical need for the attainment of guideline lipid-targets in even 2/3 of patients. Bempedoic acid, the first in-class inhibitor of ATP-citrate lyase presents a new approach to lipid-lowering therapy. By reducing the endogenous production of cholesterol, upstream of the rate-limiting enzyme HMG-CoA-reductase, i.e., the target of statins, bempedoic acid reduces circulating plasma concentrations of low-density lipoprotein cholesterol (LDL-C), and major adverse CVD events (MACE). Bempedoic acid has the potential to contribute to the reduction of CVD risk not only as monotherapy, but even further as part of a lipid-lowering combination therapy with ezetimibe, reducing LDL-C cholesterol up to 40%. This position paper of the International Lipid Expert Panel (ILEP) summarises the recent evidence around the efficacy and safety of bempedoic acid and presents practical recommendations for its use, which complement the 'lower-is-better-for-longer' approach to lipid management, which is applied across international guidelines for the management of CVD risk. Practical evidence-based guidance is provided relating to the use of bempedoic acid in atherosclerotic CVD, familial hypercholesterolaemia, and statin intolerance. Although there are still no sufficient data avilable for the role of bempedoic acid in the primary prevention of CVD, its favourable effects on plasma glucose and inflammatory markers makes this drug a rational choice in the patient-centred care of specific groups of primary prevention.


Assuntos
Anticolesterolemiantes , Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , LDL-Colesterol , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco , Colesterol , Fatores de Risco de Doenças Cardíacas , Anticolesterolemiantes/uso terapêutico
19.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902291

RESUMO

Systemic arterial hypertension (AH) is a multifaceted disease characterized by accelerated vascular aging and high cardiometabolic morbidity and mortality. Despite extensive work in the field, the pathogenesis of AH is still incompletely understood, and its treatment remains challenging. Recent evidence has shown a deep involvement of epigenetic signals in the regulation of transcriptional programs underpinning maladaptive vascular remodeling, sympathetic activation and cardiometabolic alterations, all factors predisposing to AH. After occurring, these epigenetic changes have a long-lasting effect on gene dysregulation and do not seem to be reversible upon intensive treatment or the control of cardiovascular risk factors. Among the factors involved in arterial hypertension, microvascular dysfunction plays a central role. This review will focus on the emerging role of epigenetic changes in hypertensive-related microvascular disease, including the different cell types and tissues (endothelial cells, vascular smooth muscle cells and perivascular adipose tissue) as well as the involvement of mechanical/hemodynamic factors, namely, shear stress.


Assuntos
Células Endoteliais , Hipertensão , Humanos , Células Endoteliais/patologia , Microvasos/patologia , Tecido Adiposo/patologia , Epigênese Genética
20.
J Mol Cell Cardiol ; 174: 56-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414111

RESUMO

OBJECTIVE: Arterial thrombosis may be initiated by endothelial inflammation or denudation, activation of blood-borne elements or the coagulation system. Tissue factor (TF), a central trigger of the coagulation cascade, is regulated by the pro-inflammatory NF-κB-dependent pathways. Sirtuin 6 (SIRT6) is a nuclear member of the sirtuin family of NAD+-dependent deacetylases and is known to inhibit NF-κB signaling. Its constitutive deletion in mice shows early lethality with hypoglycemia and accelerated aging. Of note, the role of SIRT6 in arterial thrombosis remains unknown. Thus, we hypothesized that endothelial SIRT6 protects from arterial thrombosis by modulating inhibition of NF-κB-associated pathways. APPROACH AND RESULTS: Using a laser-induced carotid thrombosis model, in vivo arterial occlusion occurred 45% faster in 12-week-old male endothelial-specific Sirt6-/- mice as compared to Sirt6fl/fl controls (n ≥ 9 per group; p = 0.0012). Levels of procoagulant TF were increased in animals lacking endothelial SIRT6 as compared to control littermates. Similarly, in cultured human aortic endothelial cells, SIRT6 knockdown increased TF mRNA, protein and activity. Moreover, SIRT6 knockdown increased mRNA levels of NF-κB-associated genes tumor necrosis factor alpha (TNF-α), poly [ADP-ribose] polymerase 1 (PARP-1), vascular cell adhesion molecule 1 (VCAM-1), and cyclooxygenase-2 (COX-2); at the protein level, COX-2, VCAM-1, TNF-α, and cleaved PARP-1 remained increased after Sirt6 knockdown. CONCLUSIONS: Endothelium-specific Sirt6 deletion promotes arterial thrombosis in mice. In cultured human aortic endothelial cells, SIRT6 silencing enhances TF expression and activates pro-inflammatory pathways including TNF-α, cleaved PARP-1, VCAM-1 and COX-2. Hence, endogenous endothelial SIRT6 exerts a protective role in experimental arterial thrombosis.


Assuntos
Sirtuínas , Trombose , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Ciclo-Oxigenase 2 , Células Endoteliais , NF-kappa B , Inibidores de Poli(ADP-Ribose) Polimerases , Sirtuínas/genética , Trombose/genética , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA