Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Synchrotron Radiat ; 30(Pt 3): 538-545, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042663

RESUMO

Recent advances in automation have fostered the development of unattended data collection services at a handful of synchrotron facilities worldwide. At the Swiss Light Source, the installation of new high-throughput sample changers at all three macromolecular crystallography beamlines and the commissioning of the Fast Fragment and Compound Screening pipeline created a unique opportunity to automate data acquisition. Here, the DA+ microservice software stack upgrades, implementation of an automatic loop-centering service and deployment of the Smart Digital User (SDU) software for unattended data collection are reported. The SDU software is the decision-making software responsible for communications between services, sample and device safety, sample centering, sample alignment with grid based X-ray diffraction and, finally, data collection.

2.
Science ; 375(6583): 845-851, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35113649

RESUMO

Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.

3.
IUCrJ ; 7(Pt 6): 1131-1141, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209324

RESUMO

Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.

4.
J Synchrotron Radiat ; 27(Pt 3): 860-863, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381791

RESUMO

In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL.


Assuntos
Cristalografia por Raios X/instrumentação , Substâncias Macromoleculares/química , Desenho de Equipamento , Reprodutibilidade dos Testes , Robótica/instrumentação , Síncrotrons/instrumentação
5.
J Synchrotron Radiat ; 27(Pt 2): 329-339, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153271

RESUMO

Detection of heavy elements, such as metals, in macromolecular crystallography (MX) samples by X-ray fluorescence is a function traditionally covered at synchrotron MX beamlines by silicon drift detectors, which cannot be used at X-ray free-electron lasers because of the very short duration of the X-ray pulses. Here it is shown that the hybrid pixel charge-integrating detector JUNGFRAU can fulfill this function when operating in a low-flux regime. The feasibility of precise position determination of micrometre-sized metal marks is also demonstrated, to be used as fiducials for offline prelocation in serial crystallography experiments, based on the specific fluorescence signal measured with JUNGFRAU, both at the synchrotron and at SwissFEL. Finally, the measurement of elemental absorption edges at a synchrotron beamline using JUNGFRAU is also demonstrated.

6.
Science ; 365(6448): 61-65, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31273117

RESUMO

Conformational dynamics are essential for proteins to function. We adapted time-resolved serial crystallography developed at x-ray lasers to visualize protein motions using synchrotrons. We recorded the structural changes in the light-driven proton-pump bacteriorhodopsin over 200 milliseconds in time. The snapshot from the first 5 milliseconds after photoactivation shows structural changes associated with proton release at a quality comparable to that of previous x-ray laser experiments. From 10 to 15 milliseconds onwards, we observe large additional structural rearrangements up to 9 angstroms on the cytoplasmic side. Rotation of leucine-93 and phenylalanine-219 opens a hydrophobic barrier, leading to the formation of a water chain connecting the intracellular aspartic acid-96 with the retinal Schiff base. The formation of this proton wire recharges the membrane pump with a proton for the next cycle.


Assuntos
Bacteriorodopsinas/química , Prótons , Ácido Aspártico/química , Cristalografia por Raios X/métodos , Citoplasma/química , Lasers , Movimento (Física) , Conformação Proteica , Bases de Schiff , Síncrotrons
7.
J Synchrotron Radiat ; 26(Pt 1): 244-252, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655492

RESUMO

At the Swiss Light Source macromolecular crystallography (MX) beamlines the collection of serial synchrotron crystallography (SSX) diffraction data is facilitated by the recent DA+ data acquisition and analysis software developments. The SSX suite allows easy, efficient and high-throughput measurements on a large number of crystals. The fast continuous diffraction-based two-dimensional grid scan method allows initial location of microcrystals. The CY+ GUI utility enables efficient assessment of a grid scan's analysis output and subsequent collection of multiple wedges of data (so-called minisets) from automatically selected positions in a serial and automated way. The automated data processing (adp) routines adapted to the SSX data collection mode provide near real time analysis for data in both CBF and HDF5 formats. The automatic data merging (adm) is the latest extension of the DA+ data analysis software routines. It utilizes the sxdm (SSX data merging) package, which provides automatic online scaling and merging of minisets and allows identification of a minisets subset resulting in the best quality of the final merged data. The results of both adp and adm are sent to the MX MongoDB database and displayed in the web-based tracker, which provides the user with on-the-fly feedback about the experiment.

8.
Commun Biol ; 1: 124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272004

RESUMO

De novo membrane protein structure determination is often limited by the availability of large crystals and the difficulties in obtaining accurate diffraction data for experimental phasing. Here we present a method that combines in situ serial crystallography with de novo phasing for fast, efficient membrane protein structure determination. The method enables systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without the need for direct crystal harvesting. The requisite data quality for experimental phasing is achieved by accumulating diffraction signals from isomorphous crystals identified post-data collection. The method works in all experimental phasing scenarios and is particularly attractive with fragile, weakly diffracting microcrystals. The automated serial data collection approach can be readily adopted at most microfocus macromolecular crystallography beamlines.

9.
Nat Methods ; 15(10): 799-804, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275593

RESUMO

The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range. We demonstrate that these features allow accurate MX data to be recorded at unprecedented speed. We also demonstrate improvements over previous-generation detectors in terms of data quality, using native single-wavelength anomalous diffraction (SAD) phasing, for thaumatin, lysozyme, and aminopeptidase N. Our results suggest that the JUNGFRAU detector will substantially improve the performance of synchrotron MX beamlines and equip them for future synchrotron light sources.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Coleta de Dados/métodos , Substâncias Macromoleculares/química , Síncrotrons/instrumentação , Antígenos CD13/química , Desenho de Equipamento , Humanos , Modelos Moleculares , Muramidase/química
10.
J Synchrotron Radiat ; 25(Pt 1): 293-303, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271779

RESUMO

Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

11.
Nat Commun ; 8(1): 542, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912485

RESUMO

Historically, room-temperature structure determination was succeeded by cryo-crystallography to mitigate radiation damage. Here, we demonstrate that serial millisecond crystallography at a synchrotron beamline equipped with high-viscosity injector and high frame-rate detector allows typical crystallographic experiments to be performed at room-temperature. Using a crystal scanning approach, we determine the high-resolution structure of the radiation sensitive molybdenum storage protein, demonstrate soaking of the drug colchicine into tubulin and native sulfur phasing of the human G protein-coupled adenosine receptor. Serial crystallographic data for molecular replacement already converges in 1,000-10,000 diffraction patterns, which we collected in 3 to maximally 82 minutes. Compared with serial data we collected at a free-electron laser, the synchrotron data are of slightly lower resolution, however fewer diffraction patterns are needed for de novo phasing. Overall, the data we collected by room-temperature serial crystallography are of comparable quality to cryo-crystallographic data and can be routinely collected at synchrotrons.Serial crystallography was developed for protein crystal data collection with X-ray free-electron lasers. Here the authors present several examples which show that serial crystallography using high-viscosity injectors can also be routinely employed for room-temperature data collection at synchrotrons.

12.
Acta Crystallogr D Struct Biol ; 72(Pt 9): 1036-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27599736

RESUMO

The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine ϕ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.


Assuntos
Cristalografia por Raios X/instrumentação , Proteínas/química , Animais , Galinhas , Cristalografia por Raios X/métodos , Desenho de Equipamento , Insulina/química , Muramidase/química , Fótons , Suínos
13.
J Appl Crystallogr ; 49(Pt 3): 944-952, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27275141

RESUMO

A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities.

14.
Acta Crystallogr D Struct Biol ; 72(Pt 1): 93-112, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26894538

RESUMO

Here, a method for presenting crystals of soluble and membrane proteins growing in the lipid cubic or sponge phase for in situ diffraction data collection at cryogenic temperatures is introduced. The method dispenses with the need for the technically demanding and inefficient crystal-harvesting step that is an integral part of the lipid cubic phase or in meso method of growing crystals. Crystals are dispersed in a bolus of mesophase sandwiched between thin plastic windows. The bolus contains tens to hundreds of crystals, visible with an in-line microscope at macromolecular crystallography synchrotron beamlines and suitably disposed for conventional or serial crystallographic data collection. Wells containing the crystal-laden boluses are removed individually from hermetically sealed glass plates in which crystallization occurs, affixed to pins on goniometer bases and excess precipitant is removed from around the mesophase. The wells are snap-cooled in liquid nitrogen, stored and shipped in Dewars, and manually or robotically mounted on a goniometer in a cryostream for diffraction data collection at 100 K, as is performed routinely with standard, loop-harvested crystals. The method is a variant on the recently introduced in meso in situ serial crystallography (IMISX) method that enables crystallographic measurements at cryogenic temperatures where crystal lifetimes are enormously enhanced whilst reducing protein consumption dramatically. The new approach has been used to generate high-resolution crystal structures of a G-protein-coupled receptor, α-helical and ß-barrel transporters and an enzyme as model integral membrane proteins. Insulin and lysozyme were used as test soluble proteins. The quality of the data that can be generated by this method was attested to by performing sulfur and bromine SAD phasing with two of the test proteins.


Assuntos
Insulina/química , Proteínas de Membrana/química , Muramidase/química , Animais , Bactérias/química , Proteínas de Bactérias/química , Galinhas , Temperatura Baixa , Cristalização/métodos , Cristalografia por Raios X/métodos , Modelos Moleculares , Transição de Fase , Solubilidade , Suínos
15.
Methods Mol Biol ; 1320: 175-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26227043

RESUMO

Experimental phasing by single- or multi-wavelength anomalous dispersion (SAD or MAD) has become the most popular method of de novo macromolecular structure determination. Continuous advances at third-generation synchrotron sources have enabled the deployment of rapid data collection protocols that are capable of recording SAD or MAD data sets. However, procedural simplifications driven by the pursuit of high throughput have led to a loss of sophistication in data collection strategies, adversely affecting measurement accuracy from the viewpoint of anomalous phasing. In this chapter, we detail optimized strategies for collecting high-quality data for experimental phasing, with particular emphasis on minimizing errors from radiation damage as well as from the instrument. This chapter also emphasizes data processing for "on-the-fly" decision-making during data collection, a critical process when data quality depends directly on information gathered while at the synchrotron.


Assuntos
Cristalografia por Raios X/métodos , Substâncias Macromoleculares , Algoritmos , Gráficos por Computador , Cristalização , Cristalografia por Raios X/instrumentação , Coleta de Dados , Tomada de Decisões , Desenho de Equipamento , Reprodutibilidade dos Testes , Espalhamento de Radiação , Software , Espectrometria de Fluorescência , Síncrotrons , Raios X
16.
J Synchrotron Radiat ; 22(4): 895-900, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134792

RESUMO

The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0-90°), followed by a ϕ stage (0-360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1238-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057665

RESUMO

The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the ß2-adrenoreceptor-Gs protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Membrana/química , Conformação Proteica
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 387-97, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664750

RESUMO

Recent advances in synchrotron sources, beamline optics and detectors are driving a renaissance in room-temperature data collection. The underlying impetus is the recognition that conformational differences are observed in functionally important regions of structures determined using crystals kept at ambient as opposed to cryogenic temperature during data collection. In addition, room-temperature measurements enable time-resolved studies and eliminate the need to find suitable cryoprotectants. Since radiation damage limits the high-resolution data that can be obtained from a single crystal, especially at room temperature, data are typically collected in a serial fashion using a number of crystals to spread the total dose over the entire ensemble. Several approaches have been developed over the years to efficiently exchange crystals for room-temperature data collection. These include in situ collection in trays, chips and capillary mounts. Here, the use of a slowly flowing microscopic stream for crystal delivery is demonstrated, resulting in extremely high-throughput delivery of crystals into the X-ray beam. This free-stream technology, which was originally developed for serial femtosecond crystallography at X-ray free-electron lasers, is here adapted to serial crystallography at synchrotrons. By embedding the crystals in a high-viscosity carrier stream, high-resolution room-temperature studies can be conducted at atmospheric pressure using the unattenuated X-ray beam, thus permitting the analysis of small or weakly scattering crystals. The high-viscosity extrusion injector is described, as is its use to collect high-resolution serial data from native and heavy-atom-derivatized lysozyme crystals at the Swiss Light Source using less than half a milligram of protein crystals. The room-temperature serial data allow de novo structure determination. The crystal size used in this proof-of-principle experiment was dictated by the available flux density. However, upcoming developments in beamline optics, detectors and synchrotron sources will enable the use of true microcrystals. This high-throughput, high-dose-rate methodology provides a new route to investigating the structure and dynamics of macromolecules at ambient temperature.


Assuntos
Cristalografia por Raios X/instrumentação , Síncrotrons/instrumentação , Animais , Galinhas , Cristalografia por Raios X/economia , Cristalografia por Raios X/métodos , Desenho de Equipamento , Modelos Moleculares , Muramidase/química , Temperatura , Viscosidade
19.
Nat Methods ; 12(2): 131-3, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25506719

RESUMO

We describe a data collection method that uses a single crystal to solve X-ray structures by native SAD (single-wavelength anomalous diffraction). We solved the structures of 11 real-life examples, including a human membrane protein, a protein-DNA complex and a 266-kDa multiprotein-ligand complex, using this method. The data collection strategy is suitable for routine structure determination and can be implemented at most macromolecular crystallography synchrotron beamlines.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Membrana/química , Complexos Multiproteicos/química , Difração de Raios X/métodos , Animais , Humanos , Modelos Moleculares , Conformação Proteica , Software , Síncrotrons
20.
J Synchrotron Radiat ; 21(Pt 2): 340-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562555

RESUMO

A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. Building upon and critically extending previous developments realised for the high-resolution endstations of the two undulator beamlines X06SA and X10SA, as well as the super-bend dipole beamline X06DA, the new diffractometer was designed to the following core design goals. (i) Redesign of the goniometer to a sub-micrometer peak-to-peak cylinder of confusion for the horizontal single axis. Crystal sizes down to at least 5 µm and advanced sample-rastering and scanning modes are supported. In addition, it can accommodate the new multi-axis goniometer PRIGo (Parallel Robotics Inspired Goniometer). (ii) A rapid-change beam-shaping element system with aperture sizes down to a minimum of 10 µm for microcrystallography measurements. (iii) Integration of the on-axis microspectrophotometer MS3 for microscopic sample imaging with 1 µm image resolution. Its multi-mode optical spectroscopy module is always online and supports in situ UV/Vis absorption, fluorescence and Raman spectroscopy. (iv) High stability of the sample environment by a mineral cast support construction and by close containment of the cryo-stream. Further features are the support for in situ crystallization plate screening and a minimal achievable detector distance of 120 mm for the Pilatus 6M, 2M and the macromolecular crystallography group's planned future area detector Eiger 16M.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA