RESUMO
Mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum stress-inducible secreting protein, has evolutionarily conserved immune-regulatory function that contributes to the negative regulation of inflammation in macrophages. In this study, we investigated the profiles of MANF in the macrophages of the patients with active inflammatory bowel disease (IBD) and the mice with experimental colitis, which was induced in both myeloid cell-specific MANF knockout mice and wild-type mice by 3% dextran sodium sulfate (DSS) for 7 days. We found that MANF expression was significantly increased in intestinal macrophages from both the mice with experimental colitis and patients with active IBD. DSS-induced colitis was exacerbated in myeloid cell-specific MANF knockout mice. Injection of recombinant human MANF (rhMANF, 10 mg·kg-1·d-1, i.v.) from D4 to D6 significantly ameliorated experimental colitis in DSS-treated mice. More importantly, MANF deficiency in myeloid cells resulted in a dramatic increase in the number of Ly6ChiCX3CRint proinflammatory macrophages in colon lamina propria of DSS-treated mice, and the proinflammatory cytokines and chemokines were upregulated as well. Meanwhile, we demonstrated that MANF attenuated Th17-mediated immunopathology by inhibiting BATF2-mediated innate immune response and downregulating CXCL9, CXCL10, CXCL11 and IL-12p40; MANF functioned as a negative regulator in inflammatory macrophages via inhibiting CHOP-BATF2 signaling pathway, thereby protecting against DSS-induced mouse colitis. These results suggest that MANF ameliorates colon injury by negatively regulating inflammatory macrophage transformation, which shed light on a potential therapeutic target for IBD.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Transdução de Sinais , Macrófagos/metabolismo , Colo/metabolismo , Fatores de Crescimento Neural/genética , Camundongos Knockout , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Receptor 1 de Quimiocina CX3CRESUMO
Long noncoding RNAs (lncRNAs) are defined as transcripts of more than 200 nucleotides that have little or no coding potential. LncRNAs function as key regulators in diverse physiological and pathological processes. However, the roles of lncRNAs in lipopolysaccharide (LPS)-induced acute liver injury (ALI) are still elusive. In this study, we report the roles of lncRNA Gm26917 induced by LPS in modulating liver inflammation. As key components of the innate immune system, macrophages play critical roles in the initiation, progression and resolution of ALI. Our studies demonstrated that Gm26917 localized in the cytoplasm of hepatic macrophages and globally regulated the expression of inflammatory genes and the differentiation of macrophages. In vivo study showed that lentivirus-mediated gene silencing of Gm26917 attenuated liver inflammation and protected mice from LPS-induced ALI. Furthermore, mechanistic study showed that the 3'-truncation of Gm26917 interacted with the N-terminus of Annexin A1, a negative regulator of the NF-κB signaling pathway. We also found that Gm26917 knockdown suppressed NF-κB activity by decreasing the ubiquitination of Annexin A1 and its interaction with NEMO. In addition, expression of Gm26917 in inflammatory macrophages was regulated by the transcription factor forkhead box M1 (FOXM1). LPS treatment dramatically increased the binding of FOXM1 to the promoter region of Gm26917 in macrophages. In summary, our findings suggest that lncRNA Gm26917 silencing protects against LPS-induced liver injury by regulating the TLR4/NF-κB signaling pathway in macrophages.
RESUMO
Multifunctional nanoclusters based on Fe3O4 nanoparticles for magnetic resonance imaging (MRI) and drug delivery are reported here. At first, oleic acid (OA)-coated Fe3O4 nanoparticles were prepared. Then block copolymer Pluronic F127 or folic acid (FA) conjugated-Pluronic F127 was used to modify the hydrophobic nanoparticles to become hydrophilic Fe3O4@F127 nanoclusters via facile ultrasonic treatment. During this process, drug molecules can also be introduced into the nanoclusters and therefore the targeted drug delivery system was formed. Next, we verified the feasibility of the nanoclusters as drug delivery vehicles and magnetic contrast agents. The nanoclusters have an average size of 200 nm and remained stable in water for long periods. Folic acid-modified nanoclusters showed an enhanced intracellular uptake into HepG2 cells by using both cellular iron amount analysis and flow cytometry analysis. Besides, Fe3O4@F127@FA nanoclusters showed good compatibility in the tested concentration range and good sensitivity in T 2-weighted MRI. The magnetic nanoclusters combined with drug delivery properties have greatly increased the significance in the diagnosis and therapy of diseases, which are suitable for systematical administration of hydrophobic drugs and simultaneously MRI diagnosis.