Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Inorg Chem ; 63(28): 13093-13099, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953699

RESUMO

Designing and synthesizing hollow frame structures with unique three-dimensional open structures in electrocatalysis remain a challenge. Etching is an effective method to synthesize metal-organic frameworks (MOFs) with a hollow structure and rich function. Herein, we report the design and synthesis of Hf-doped CoP hollow nanocubes by selective etching and ion exchange. Different from the traditional etching method, we used acid xylenol orange solution to etch typically the (211) crystal face of ZIF-67, obtaining the unique bell-like structure, named XO-ZIF-67. Subsequently, Hf-doped CoP hollow nanocubes were formed by Hf4+ doping and simple phosphating treatment. Electrochemical tests showed that the overpotential of the obtained catalyst is only 291 mV at the current density of 10 mA cm-2 when applied in catalyzing the oxygen evolution reaction (OER). Furthermore, the catalyst shows excellent stability when running in 1 M KOH solution for 25 h.

2.
J Colloid Interface Sci ; 673: 807-816, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38906002

RESUMO

PBA frameworks have stood out among metal-organic frameworks because of their easy preparation, excellent stability, porous structures, and rich redox properties. Unfortunately, their non-ideal conductivity and significant volume expansion during cycling prevent more widespread application in alkali-metal-ion (Li+, Na+, and K+) batteries. By changing the type and molar ratio of metal ions, Rubik's PBA frameworks with infinite structural variations were obtained in this study, just like the Rubik's cube undergoes infinite changes during the rotation. X-ray adsorption fine structure measurements have documented the existence and determined the coordination environment of the metal ions in the Rubik's PBA framework. Benefiting from the more stable Rubik's cube structures with diverse composition, enhanced conductivity, and greater adsorption capacity, the obtained Rubik's cubes CoM-PBA anodes, especially CoZn-PBA deliver the enhanced cycling and rate performance in all the alkali-metal-ion batteries. The findings are supported by density functional theory calculations. Ex-situ X-ray photoelectron spectroscopy, and in-situ X-ray diffraction measurements were undertaken to explore the storage mechanism of CoZn-PBA anodes. Our results further demonstrate that the Rubik's cube PBA framework-based materials could be widely applied in the field of alkali-metal-ion batteries.

3.
Nanoscale ; 16(24): 11429-11456, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38855977

RESUMO

Covalent organic frameworks (COFs), characterized by well-ordered pores, large specific surface area, good stability, high precision, and flexible design, are a promising material for batteries and have received extensive attention from researchers in recent years. Compared with inorganic materials, COFs can construct elastic frameworks with better structural stability, and their chemical compositions and structures can be precisely adjusted and functionalized at the molecular level, providing an open pathway for the convenient transfer of ions. In this review, the energy storage mechanism and unique superiority of COFs and COF composites as electrodes, separators and electrolytes for rechargeable batteries are discussed in detail. Special emphasis is placed on the relationship between the establishment of COF structures and their electrochemical performance in different batteries. Finally, this review summarizes the challenges and prospects of COFs and COF composites in battery equipment.

4.
Chem Sci ; 15(25): 9775-9783, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38939152

RESUMO

Transition-metal compounds (TMCs) have recently become promising candidates as lithium-sulfur (Li-S) battery cathode materials because they have unique adsorption and catalytic properties. However, the relationship between the anionic species and performance has not been sufficiently revealed. Herein, using FeCoNiX (X = O, S, and P) compounds as examples, we systematically studied the effects of the anion composition of FeCoNiX compounds on the adsorption and catalytic abilities of sulfur cathodes in Li-S batteries. Adsorption tests and density functional theory calculations showed that the adsorption ability toward lithium polysulfides follows the order: FeCoNiP > FeCoNiO > FeCoNiS, while in situ ultraviolet-visible spectroscopy and cyclic voltammetry revealed that the catalytic ability for lithium polysulfide conversion follows the order: FeCoNiP > FeCoNiS > FeCoNiO. These results indicate that FeCoNiP is an excellent polysulfide immobilizer and catalyst that restricts shuttling and improves reaction kinetics. Electrochemical tests further demonstrated that the FeCoNiP cathode delivered superior cycling performance to FeCoNiO or FeCoNiS. In addition, the battery performance order is consistent with that of catalytic ability, which suggests that catalytic ability plays a key influencing role in batteries. This study provides new insight into the use of O-, S-, and P-doped TMCs as functional sulfur carriers.

5.
Angew Chem Int Ed Engl ; : e202410255, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881320

RESUMO

Metal-organic frameworks (MOFs) are considered as a promising candidate for advancing energy storage owing to their intrinsic multi-channel architecture, high theoretical capacity, and precise adjustability. However, the low conductivity and poor structural stability lead to unsatisfactory rate and cycling performance, greatly hindering their practical application. Herein, we propose a sea urchin-like Co-ZIF-L superstructure using molecular template to induce self-assembly followed by ion exchange method, which shows improved conductivity, successive channels, and high stability. The ion exchange can gradually etch the superstructure, leading to the reconstruction of Co-ZIF-L with three-dimensional (3D) cross-linked ultrathin porous nanosheets. Moreover, the precise control of Co to Ni ratios can construct effective micro-electric field and synergistically enhance the rapid transfer of electrons and electrolyte ions, improving the conductivity and stability of CoNi-ZIF-L. The Co6.53Ni-ZIF-L electrode exhibits a high specific capacity (602 F g-1 at 1 A g-1) and long cycling stability (95.3% retention after 4,000 cycles at 5 A g-1). The Co6.53Ni-ZIF-L//AC asymmetric flexible supercapacitor employing gel electrolyte also exhibits excellent cycling stability (93.3% retention after 4000 cycles at 5 A g-1). This discovery provides valuable insights for electrode material selection and energy storage efficiency improvement.

6.
Nanoscale ; 16(26): 12380-12396, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38888150

RESUMO

Micro-supercapacitors (MSCs) have attracted significant attention for potential applications in miniaturized electronics due to their high power density, rapid charge/discharge rates, and extended lifespan. Despite the unique properties of low-dimensional nanomaterials, which hold tremendous potential for revolutionary applications, effectively integrating these attributes into MSCs presents several challenges. 3D printing is rapidly emerging as a key player in the fabrication of advanced energy storage devices. Its ability to design, prototype, and produce functional devices incorporating low-dimensional nanomaterials positions it as an influential technology. In this review, we delve into recent advancements and innovations in micro-supercapacitor manufacturing, with a specific focus on the incorporation of low-dimensional nanomaterials using direct ink writing (DIW) 3D printing techniques. We highlight the distinct advantages offered by low-dimensional nanomaterials, from quantum effects in 0D nanoparticles that result in high capacitance values to rapid electron and ion transport in 1D nanowires, as well as the extensive surface area and mechanical flexibility of 2D nanosheets. Additionally, we address the challenges encountered during the fabrication process, such as material viscosity, printing resolution, and seamless integration of active materials with current collectors. This review highlights the remarkable progress in the energy storage sector, demonstrating how the synergistic use of low-dimensional nanomaterials and 3D printing technologies not only overcomes existing limitations but also opens new avenues for the development and production of advanced micro-supercapacitors. The convergence of low-dimensional nanomaterials and DIW 3D printing heralds the advent of the next generation of energy storage devices, making a significant contribution to the field and laying the groundwork for future innovations.

7.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847362

RESUMO

Prussian blue analogue (PBA)/metal-organic frameworks (MOFs) are multifunctional precursors for the synthesis of metal/metal compounds, carbon, and their derived composites (P/MDCs) in chemical, medical, energy, and other applications. P/MDCs combine the advantages of both the high specific surface area of PBA/MOF and the electronic conductivity of metal compound/carbon. Although the calcination under different atmospheres has been extensively studied, the transformation mechanism of PBA/MOF under hydrothermal conditions remains unclear. The qualitative preparation of P/MDCs in hydrothermal conditions remains a challenge. Here, we select PBA to construct a machine-learning model and measure its hydrothermal phase diagram. The architecture-activity relationship of substances among nine parameters was analyzed for the hydrothermal phase transformation of PBA. Excitingly, we established a universal qualitative model to accurately fabricate 31 PBA derivates. Additionally, we performed three-dimensional reconstructed transmission electron microscopy, X-ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, in situ X-ray powder diffraction, and theoretical calculation to analyze the advantages of hydrothermal derivatives in the oxygen evolution reaction and clarify their reaction mechanisms. We uncover the unified principles of the hydrothermal phase transformation of PBA, and we expect to guide the design for a wide range of composites.

8.
Chem Sci ; 15(22): 8422-8429, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846403

RESUMO

Designing artificial photocatalysts for CO2 reduction is challenging, mainly due to the intrinsic difficulty of making multiple functional units cooperate efficiently. Herein, three-dimensional metal covalent organic frameworks (3D MCOFs) were employed as an innovative platform to integrate a strong Ru(ii) light-harvesting unit, an active Re(i) catalytic center, and an efficient charge separation configuration for photocatalysis. The photosensitive moiety was precisely stabilized into the covalent skeleton by using a rational-designed Ru(ii) complex as one of the building units, while the Re(i) center was linked via a shared bridging ligand with an Ru(ii) center, opening an effective pathway for their electronic interaction. Remarkably, the as-synthesized MCOF exhibited impressive CO2 photoreduction activity with a CO generation rate as high as 1840 µmol g-1 h-1 and 97.7% selectivity. The femtosecond transient absorption spectroscopy combined with theoretical calculations uncovered the fast charge-transfer dynamics occurring between the photoactive and catalytic centers, providing a comprehensive understanding of the photocatalytic mechanism. This work offers in-depth insight into the design of MCOF-based photocatalysts for solar energy utilization.

9.
Small ; : e2401587, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855999

RESUMO

Heterostructured materials commonly consist of bifunctions due to the different ingredients. For host material in the sulfur cathode of lithium-sulfur (Li-S) batteries, the chemical adsorption and catalytic activity for lithium polysulfides (LiPS) are important. This work obtains a Ni5P2-Ni nanoparticle (Ni5P2-NiNPs) heterostructure through a confined self-reduction method followed by an in situ phosphorization process using Al/Ni-MOF as precursors. The Ni5P2-Ni heterostructure not only has strong chemical adsorption, but also can effectively catalyze LiPS conversion. Furthermore, the synthetic route can keep Ni5P2-NiNPs inside of the nanocomposites, which have structural stability, high conductivity, and efficient adsorption/catalysis in LiPS conversion. These advantages make the assembled Li-S battery deliver a reversible specific capacity of 619.7 mAh g- 1 at 0.5 C after 200 cycles. The in situ ultraviolet-visible technique proves the catalytic effect of Ni5P2-Ni heterostructure on LiPS conversion during the discharge process.

10.
Angew Chem Int Ed Engl ; : e202408989, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837505

RESUMO

The extensive industrial applications of fuel oil, a critical strategic resource, are accompanied by significant environmental and health concerns due to the presence of sulfur-containing compounds in its composition, which result in hazardous combustion waste. Extensive research has been conducted to develop technologies for low-vulcanization fuel production to address this issue. Consequently, the investigation of catalysts for environmentally friendly and safe photocatalytic desulfurization becomes imperative. To that end, we have designed efficient MIL-101(Fe)/CQDs@g-C3N4 (MIL101/CDs-C3N4) Z-scheme heterojunction photocatalysts with high carrier separation and mobility through a thermal polymerization-hydrothermal strategy. The high concentration of photogenerated carriers facilitates the activation of oxygen and H2O2, leading to increased production of ROS (·O2-, ·OH, h+), thereby enhancing the photocatalytic desulfurization (PODS). Additionally, DFT calculations were utilized to determine the electron migration pathways of the catalysts and adsorption energies of DBT (dibenzothiophene). Moreover, Gibbs free energy calculations indicated that MIL101/CDs-C3N4 exhibited the lowest activation energy for oxygen and H2O2. The mechanism of photocatalytic desulfurization was proposed through a combination of theoretical calculations and experimental studies. This study provides guidance for the development of MOF-based Z-scheme systems and their practical application in desulfurization processes.

11.
ChemSusChem ; : e202400890, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924355

RESUMO

Manganese-based compounds, especially manganese oxides, are one of the most exceptional electrode materials. Specifically, manganese oxides have gained significant interest owing to their unique crystal structures, high theoretical capacity, abundant natural availability and eco-friendly nature. However, as transition metal semiconductors, manganese oxide possess low electrical conductivity, limited rate capacity, and suboptical cycle stability. Thus, combining manganese oxides with carbon or other metallic materials can significantly improve their electrochemical performance. These composites increase active sites and conductivity, thereby improving electrode reaction kinetics, cycle stability, and lifespan of supercapacitors (SCs) and batteries. This paper reviews the latest applications of Mn-based cathodes in SCs and advanced batteries. Moreover, the energy storage mechanisms were also proposed. In this review, the development prospects and challenges for advanced energy storage applications of Mn-based cathodes are summarized.

12.
Adv Mater ; : e2406094, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811150

RESUMO

Uniquely functional nanocomplexes with rich coordination environments are critical in energy storage. However, the construction of structurally versatile nanocomplexes remains challenging. In this study, a nickel-based complex with structural variations is designed via thermodynamic modulation using a dual-ligand synthesis strategy. A nickel-based nanomaterial (NiSA-SSA-160) with a large specific surface area is synthesized around the competing coordination of the host and guest molecules that differ in terms of the chemical properties of the O and S elements. Concurrently, the coordination environment of NiSA-SSA-160 is investigated via X-ray absorption fine structure spectroscopy. The thiol functional groups synergistically induced an electron-rich Ni structure, thus increasing the electron density of the central atom. The electrochemical performance of an assembled NiSA-SSA-160//Zn@CC battery is shown to improve significantly, with a maximum energy density of 0.54 mWh cm-2 and a peak power density of 49.49 mW cm-2. This study provides a new perspective regarding coordination transformations and offers an idea for the design of functionally rich nanomaterials.

13.
Inorg Chem ; 63(23): 10823-10831, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38803192

RESUMO

The weak chemical immobilization ability and poor catalytic effect of MXene inhibit its application in lithium-sulfur (Li-S) batteries. Herein, a novel MXene@FeCoNiP composite is rationally developed and utilized as a sulfur host for Li-S batteries. In this well-designed MXene-based nanostructure, the introduction of FeCoNiP in the interlayer of MXene nanosheets can not only effectively inhibit the restacking of MXene nanosheets but also act as an accelerator for the adsorption and catalysis of polysulfides to restrain the shuttling effect and facilitate the transformation of polysulfides. The existence of two-dimensional MXene nanosheets provides more active sites and improves the conductivity, which is beneficial for accelerating the reaction kinetics. Thus, the as-prepared MXene@FeCoNiP composites achieve an outstanding performance for Li-S batteries. This work provides an opportunity to construct an ideal sulfur host with the triple effect of "conductivity-adsorption-catalysis".

14.
Inorg Chem ; 63(22): 10324-10334, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38773678

RESUMO

Conductive metal-organic frameworks (cMOFs), as a kind of porous material, are considered to be highly promising materials in the field of electrochemistry due to their excellent conductivity. However, due to the low specific capacitance of pure cMOFs, their application in supercapacitors is limited. By virtue of the high theoretical capacity and excellent chemical stability of Co-based compounds, in this work, cMOFs' M-HHTP (M = Ni, Co, NiCo, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) are grown in situ on Co(OH)2, CoP, and Co3O4 nanosheets, resulting in a series of electroactive compounds as electrode materials used in supercapacitors. Among all of the compounds, Ni-HHTP@Co(OH)2 shows the most excellent energy storage performance and outstanding cyclic stability in the application of aqueous asymmetric supercapacitors.

15.
Adv Mater ; : e2402234, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781597

RESUMO

Rationally designed defects in a crystal can confer unique properties. This study showcases a novel dual-defects engineering strategy to tailor the electrochemical response of metal-organic framework (MOF) materials used for electrochemical energy storage. Salicylic acid (SA) is identified as an effective modulator to control MOF-74 growth and induce structural defects, and cobalt cation doping is adopted for introducing a second type of defect. The resulting dual-defects engineered bimetallic MOF exhibits a discharging capacity of 218.6 mAh g-1, 4.4 times that of the pristine MOF-74, and significantly improved cycling stability. Moreover, the engineered MOF-74(Ni0.675Co0.325)-8//Zn aqueous battery shows top energy/power density performances for Ni-Zn batteries (266.5 Wh kg-1, 17.22 kW kg-1). Comprehensive investigations reveal that engineered defects modify the local coordination environment and promote the in situ electrochemical reconfiguration during operation to significantly boost the electrochemical activity. This work suggests that rational tailoring of the defects within the MOF crystal is an effective strategy to manipulate the coordination environment of the metal centers and the corresponding electrochemical reconfiguration for electrochemical applications.

16.
Small ; : e2401565, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745539

RESUMO

Stretchable strain sensors play a crucial role in intelligent wearable systems, serving as the interface between humans and environment by translating mechanical strains into electrical signals. Traditional fiber strain sensors with intrinsic uniform axial strain distribution face challenges in achieving high sensitivity and anisotropy. Moreover, existing micro/nano-structure designs often compromise stretchability and durability. To address these challenges, a novel approach of using 3D printing to fabricate MXene-based flexible sensors with tunable micro and macrostructures.  Poly(tetrafluoroethylene) (PTFE) as a pore-inducing agent is added into 3D printable inks to achieve controllable microstructural modifications. In addition to microstructure tuning, 3D printing is employed for macrostructural design modifications, guided by finite element modeling (FEM) simulations. As a result, the 3D printed sensors exhibit heightened sensitivity and anisotropy, making them suitable for tracking static and dynamic displacement changes. The proposed approach presents an efficient and economically viable solution for standardized large-scale production of advanced wire strain sensors.

17.
ACS Appl Mater Interfaces ; 16(19): 24831-24839, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691148

RESUMO

Constructing artificial photocatalysts with panchromatic solar energy utilization remains an appealing challenge. Herein, two complementary photosensitizers, [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) and porphyrin dyes, have been cosensitized in metal covalent organic frameworks (MCOFs), resulting in the MCOFs with strong light absorption covering the full visible spectrum. Under panchromatic light irradiation, the cosensitized MCOFs exhibited remarkable photocatalytic H2 evolution with an optimum rate of up to 33.02 mmol g-1 h-1. Even when exposed to deep-red light (λ = 700 ± 10 nm), a commendable H2 production (0.79 mmol g-1 h-1) was still obtained. Theoretical calculation demonstrated that the [Ru(bpy)3]2+ and porphyrin modules in our MCOFs have a synergistic effect to trigger an interesting dual-channel photosensitization pathway for efficient light-harvesting and energy conversion. This work highlights the potential of combining multiple PSs in MCOFs for panchromatic photocatalysis.

18.
Environ Int ; 186: 108631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588609

RESUMO

Methylmercury (MeHg) is a global environmental pollutant with neurotoxicity, which can easily crosses the blood-brain barrier and cause irreversible damage to the human central nervous system (CNS). CNS inflammation and autophagy are known to be involved in the pathology of neurodegenerative diseases. Meanwhile, MeHg has the potential to induce microglia-mediated neuroinflammation as well as autophagy. This study aims to further explore the exact molecular mechanism of MeHg neurotoxicity. We conducted in vitro studies using BV2 microglial cell from the central nervous system of mice. The role of inflammation and autophagy in the damage of BV2 cells induced by MeHg was determined by detecting cell viability, cell morphology and structure, reactive oxygen species (ROS), antioxidant function, inflammatory factors, autophagosomes, inflammation and autophagy-related proteins. We further investigated the relationship between the inflammatory response and autophagy induced by MeHg by inhibiting them separately. The results indicated that MeHg could invade cells, change cell structure, activate NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and autophagosome, release a large amount of inflammatory factors and trigger the inflammatory response and autophagy. It was also found that MeHg could disrupt the antioxidant function of cells. In addition, the inhibition of NLRP3 inflammasome alleviated both cellular inflammation and autophagy, while inhibition of autophagy increased cellular inflammation. Our current research suggests that MeHg might induce BV2 cytotoxicity through inflammatory response and autophagy, which may be mediated by the NLRP3 inflammasome activated by oxidative stress.


Assuntos
Autofagia , Inflamassomos , Inflamação , Compostos de Metilmercúrio , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Compostos de Metilmercúrio/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Autofagia/efeitos dos fármacos , Camundongos , Inflamassomos/metabolismo , Animais , Inflamação/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos
19.
J Colloid Interface Sci ; 664: 617-625, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490037

RESUMO

Lithium-sulfur batteries (LSBs) have emerged as a promising energy storage system, but their practical application is hindered by the polysulfide shuttle effect and sluggish redox kinetics. To address these challenges, we have developed CoO/MoO3@nitrogen-doped carbon (CoO/MoO3@NC) hollow heterostructures based on porous ZIF-67 as separators in LSBs. CoO has a strong anchoring effect on polysulfides. The heterostructure formed after the introduction of MoO3 increases the adsorption of polysulfides. The carbon coating outside the heterostructure improves the ion transmission efficiency of the battery, leading to enhanced electrochemical performance. The modified LSB demonstrates a low-capacity decay rate of 0.092% over 500 cycles at 0.5C, with a high discharge capacity of 613 mAh g-1 at 1C. This work presents a novel approach for the preparation of hollow heterostructure materials, aiming for high-performance LSBs.

20.
Small ; : e2312151, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438931

RESUMO

Rationally and precisely tuning the composition and structure of materials is a viable strategy to improve electrochemical deionization (EDI) performances, which yet faces enormous challenges. Herein, an eco-friendly biomimetic mineralization synthetic strategy is developed to synthesize the flower-like cobalt selenide/reduced graphene oxide (Bio-CoSe2 /rGO) composites and used as advanced sodium ion adsorption electrodes. Benefiting from the slow and controllable reaction kinetics provided by the biomimetic mineralization process, the flower-like CoSe2 is uniformly constructed in the rGO, which is endowed with robust architecture, substantial adsorption sites and rapid charge/ion transport. The Bio-CoSe2 /rGO electrode yields the maximum salt adsorption capacity and salt adsorption rate of 56.3 mg g-1 and 5.6 mg g-1 min-1 respectively, and 92.5% capacity retention after 60 cycles. These results overmatch the pristine CoSe2 and irregular granular CoSe2 /rGO synthesized by a hydrothermal method, proving the structural superiority of the Bio-CoSe2 /rGO composites. Furthermore, the in-depth adsorption kinetics study indicates the chemisorption nature of sodium ion adsorption. The structures of the Bio-CoSe2 /rGO composites after long term EDI cycles are intensively studied to unveil the mechanism behind such superior EDI performances. This study offers one effective method for constructing advanced EDI electrodes, and enriches the application of the biomimetic mineralization synthetic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA