Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
ACS Appl Mater Interfaces ; 16(25): 32466-32480, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864420

RESUMO

Multimodal flexible sensors, consisting of multiple sensing units, can sense and recognize different external stimuli by outputting different types of response signals. However, the recovery and recycling of multimodal sensors are impeded by complex structures and the use of multiple materials. Here, a bimodal flexible sensor that can sense strain by resistance change and temperature by voltage change was constructed using poly(vinyl alcohol) hydrogel as a matrix and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) as a sensing material due to its conductivity and thermoelectric effect. The plasticity of hydrogels, along with the simplicity of the sensor's components and structure, facilitates easy recovery and recycling. The incorporation of citric acid and ethylene glycol improved the mechanical properties, strain hysteresis, and antifreezing properties of the hydrogels. The sensor exhibits a remarkable response to strain, characterized by high sensitivity (gauge factor of 4.46), low detection limit (0.1%), fast response and recovery times, minimal hysteresis, and excellent stability. Temperature changes induced by hot air currents, hot objects, and light cause the sensor to exhibit high response sensitivity, fast response time, and good stability. Additionally, variations in ambient humidity and temperature minimally affect the sensor's strain response, and temperature response remains unaffected by humidity changes. The recycled sensors are essentially unchanged for bimodal sensing of strain and temperature. Finally, bimodal sensors are applied to monitor body motion, and robots to sense external stimuli.

2.
ACS Appl Mater Interfaces ; 16(19): 25148-25159, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695364

RESUMO

Green electromagnetic interference (EMI) shielding materials not only require high shielding effectiveness (SE) and low reflection but also need to be recyclable after damage; however, it is challenging to strike a balance in practice. Here, a polyacrylamide (PAM) composite composed of numerous chemically cross-linked PAM@carbon nanotube (cPAM@CNT) core-shell particles featuring rich wrinkled microstructures was prepared using an adsorption-drying-shrinking strategy. The wrinkled microstructures enable the incident electromagnetic waves (EMWs) to undergo attenuation within the composites, achieving an average EMI SE of 67.5 dB in the X band. Due to the hygroscopicity of hydrophobically associated PAM (hPAM, an adhesive for cPAM@CNTs core-shell particles), the average EMI SE of the composites further increased to 83.2 dB after exposure to 91% relative humidity for 24 h, with only a 2.7 dB low reflection. Additionally, the composites also demonstrated excellent Joule heating, photothermal performance, and recyclability, which exhibit substantial promise for advanced EMI shielding applications.

3.
Macromol Rapid Commun ; : e2400235, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742492

RESUMO

Compared with normal stimulus such as light and heat, ultrasonic possesses much deeper penetration into tissues and organs and has lower scattering in heterogeneous systems as a noninvasive stimulus. Reversible addition-fragmentation chain-transfer polymerization (RAFT) in aqueous media is performed in a commercial ultrasonic wash bath with 40 kHz frequency ultrasonic, in the presence of piezoelectric tetragonal BaTiO3 (BTO) nanoparticles. Owing to the electron transfer from BTO under the ultrasonic action, the water can be decomposed to produce hydroxyl radical (HO•) and initiate the RAFT polymerization (piezo-RAFT). The piezo-RAFT polymerization exhibits features of controllable and livingness, such as linear increase of molar mass and narrow molar mass distributions (Mw/Mn < 1.20). Excellent temporal control of the polymerization and the chain fidelity of polymers are illustrated by "ON and OFF" experiment and chain extension, separately. Moreover, this ultrasonic-driven piezoelectric-induced RAFT polymerization in aqueous media can be directly used for the preparation of piezoelectric hydrogel which have potential application for stress sensor.

4.
Bioconjug Chem ; 35(5): 567-574, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38634516

RESUMO

The exploration of pharmaceutically active agents and positron emission tomography (PET) tracers targeting CXCR4 has been a focal point in cancer research given its pivotal role in the development and progression of various cancers. While significant strides have been made in PET imaging with radiometal-labeled tracers, the landscape of 18F-labeled small molecule tracers remains relatively limited. Herein, we introduce a novel and promising derivative, [18F]SFB-AMD3465, as a targeted PET tracer for CXCR4. The compound was synthesized by modifying the pyridine ring of AMD3465, which was subsequently labeled with 18F using [18F]SFB. The study provides comprehensive insights into the design, synthesis, and biological evaluation of [18F]SFB-AMD3465. In vitro and in vivo assessments demonstrated the CXCR4-dependent, specific, and sensitive uptake of [18F]SFB-AMD3465 in the CXCR4-overexpressing 4T1 cell line and the corresponding xenograft-bearing mouse model. These findings contribute to bridging the gap in 18F-labeled PET tracers for CXCR4 and underscore the potential of [18F]SFB-AMD3465 as a PET radiotracer for in vivo CXCR4 imaging.


Assuntos
Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Receptores CXCR4 , Animais , Receptores CXCR4/análise , Receptores CXCR4/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Radioisótopos de Flúor/química , Feminino , Linhagem Celular Tumoral , Humanos , Piridinas/química , Piridinas/farmacocinética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
5.
J Phys Chem Lett ; 15(16): 4342-4350, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619464

RESUMO

Ultrasmall fluorescent nanomaterials have been widely studied as novel fluorescent probes; however, these nanomaterials are prone to structural damage or aggregation, and the sensitivity and accuracy of most single emission fluorescence probes were very low. Therefore, the controlled synthesis of stable dual-emission ratiometric fluorescence ultrasmall assembly probes still remains a challenge. Herein, star-like polymer unimolecular micelles were utilized as a scaffold template to encapsulate fluorescent ultrasmall carbon quantum dots (CQDs) and gold nanoclusters (AuNCs) via the polymer template directed self-assembly strategy to obtain multiple-responsive ratiometric fluorescent assemblies. The assemblies were ultrastable, well-defined, and nearly monodispersed with controlled size, regular morphology, and pH- and thermal-responsiveness. The assemblies can be applied to realize rapid, sensitive, quantitative, and specific detection of Cu2+ and GSH. Moreover, the convenient rapid real-time detection was realized via the combination of the visualized paper-based sensor, and the multilevel information encryption was also achieved.

6.
Int J Biol Macromol ; 254(Pt 2): 127809, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926321

RESUMO

The combination of biomass and liquid metal (LM) makes the preparation process "greener" and application of LM composite materials more sustainable. Here we reported the solvent free preparation of lignosulfonate (LS) stabilized eutectic gallium/indium (EGaIn) LM nanodroplets through ball milling (BM), which was recognized to be efficient and environmentally-friendly alternatives to solution-based methods. By regulating the BM frequency and milling time, uniform LM nanodroplets with a size <200 nm can be achieved. Moreover, the surface of the EGaIn nanodroplets was covered by LS molecules, owing to the hydrogen bond formed between Ga2O3 and LS. Hydrophilic LS shell endowed the LS@EGaIn nanodroplets excellent colloidal stability in the aqueous media. The elongation at break and fracture strength of hydrogel with the addition of LS@EGaIn significantly improved with the addition of LS@EGaIn. Besides, the conductivity and excellent stress responsibility of the LS@EGaIn composite hydrogel illustrated its potential application as s a stress sensor, flexible wearable devices and other related applications. Moreover, it was predicted that LS can be replaced by other synthesized or biological macromolecules, and induced the formation of types of LM based composite materials through such a simple method.


Assuntos
Gálio , Índio , Biomassa , Hidrogéis
7.
Small ; 20(7): e2306506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803459

RESUMO

Semiconducting nanocrystals have attracted world-wide research interest in artificial photosynthesis due to their appealing properties and enticing potentials in converting solar energy into valuable chemicals. Compared to 0D nanoparticles, 1D nanorods afford long-distance charge carriers separation and extended charge carriers lifetime due to the release of quantum confinement in axial direction. Herein, stable CsPbBr3 nanorods of distinctive dimensions are crafted without altering their properties and morphology via grafting hydrophobic polystyrene (PS) chains through a post-synthesis ligand exchange process. The resulting PS-capped CsPbBr3 nanorods exhibit a series of enhanced stabilities against UV irradiation, elevated temperature, and polar solvent, making them promising candidates for photo-induced atom transfer radical polymerization (ATRP). Tailoring the surface chemistry and dimension of the PS-capped CsPbBr3 nanorods endows stable, but variable reaction kinetics in the photo-induced ATRP of methyl methacrylate. The trapping-detrapping process of photogenerated charge carriers lead to extended lifetime of charge carriers in lengthened CsPbBr3 nanorods, contributing to a facilitated reaction kinetics of photo-induced ATRP. Therefore, by leveraging such stable PS-capped CsPbBr3 nanorods, the effects of surface chemistry and charge carriers dynamics on its photocatalytic performance are scrutinized, providing fundamental understandings for designing next-generation efficient nanostructured photocatalyst in artificial photosynthesis and solar energy conversion.

8.
ACS Appl Mater Interfaces ; 16(1): 530-539, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38126774

RESUMO

NaCl-MgCl2-CaCl2 eutectic ternary chloride salts are potential heat transfer and storage materials for high-temperature thermal energy storage. In this study, first-principles molecular dynamics simulation results were used as a data set to develop an interatomic potential for ternary chloride salts using a neural network machine learning method. Deep potential molecular dynamics (DPMD) simulations were performed to predict the microstructure and thermophysical properties of the NaCl-MgCl2-CaCl2 ternary salt. This work reveals that DPMD simulations can accurately calculate the microstructure and thermophysical properties of ternary chloride salts. The association strength of chloride ions and cations follows the order of Mg2+ > Ca2+ > Na+, and the coordination number decreases gradually with increasing temperature, indicating a progressively looser and more disordered molten structure. Furthermore, thermophysical properties, such as density, specific heat capacity, thermal conductivity, and viscosity, are in good agreement with the experimental measurements. Machine learning molecular dynamics will provide a feasible multivariate molten salt exploration method for the design of next-generation solar power plants and thermal energy storage systems.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38044869

RESUMO

The diversity of body joints and the complexity of joint motions cause flexible strain sensors to undergo complex strains such as stretching, compression, bending, and extrusion, which results in sensors that do not recognize different strains, facing great challenges in detecting the true motion characteristics of joints. Here, the monitoring of body joints' real motion characteristics has been realized by the sensor that can output response signals with different resistance trends for different strains. The sensor prepared by the sacrificial template method is characterized by a multilayered interlaced tunnel architecture and carbon black embedded in the inner wall of the tunnel. Stretching, compressive, and bending strains result in increasing, decreasing, and increasing resistance, followed by a decrease in resistance of the sensor, respectively. The sensor can still output distinguishable response signals, even in the presence of complex strains induced by squeezing. Low strain detection limits (0.03%) and wide detection ranges (>600%) are achieved due to the localized strain enhancement caused by the unique structure. The sensor can detect the motion characteristics of different joints in flexion-extension, abduction-adduction, and internal-external rotation, which, in turn, can be used for real-time monitoring of complex joint motions involved in limb rehabilitation. In addition, the sensor recognizes the 26 letters of the alphabet represented by sign language gestures. The above studies demonstrate the potential application of our prepared sensors in flexible, wearable devices.

10.
J Phys Chem Lett ; 14(46): 10361-10368, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37948649

RESUMO

Functional nanomaterials made by chiral induction have attracted extensive attention because of their intriguing characteristics and potential applications. However, the precise and controllable fabrication of chiral nanomaterials still remains challenging but is highly desired. In this study, chiral unimolecular micelles with different molecular weights and chiroptical activities were prepared by photoinduced atom transfer radical polymerization (photoATRP). Through nanoconfined growth, the chiral plasmonic nanoparticle assemblies with predesigned size and morphology were prepared using chiral unimolecular micelles as nanoreactors. The controllability over chiral assemblies and the size effect on chiroptical properties were also investigated. Furthermore, chiral complexes with absorption asymmetry and circularly polarized luminescence (glum = 4.25 × 10-4) were easily constructed via mixing of organic fluorescent molecules and chiral templates based on intermolecular hydrogen bonds. Such results indicated that our unimolecular-micelle-based templates enable the controllable preparation of both inorganic and organic chiral nanostructures with tailored dimensions, sizes, compositions, and optical activities.

11.
ACS Omega ; 8(35): 32159-32167, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692212

RESUMO

Traditional transparent polymer nanocomposites combined with functional fluorescent inorganic nanofillers are promising for many advanced optical applications. However, the aggregation of the incorporated functional nanoparticles results in light scattering and will decrease the transparency of nanocomposites, which will restrain the application of the transparent nanocomposites. Herein, a robust synthesis strategy was proposed to modify upconversion nanoparticles (UCNPs) with polymethyl methacrylate (PMMA) to form UCNP@PMMA core@shell nanocomposites though metal-free photoinduced surface-initiated atom transfer radical polymerization (photo-SI-ATRP), and thus, the dispersity of UCNP@PMMA and the interface compatibility between the surface of UCNPs and the bulk PMMA matrix was greatly improved. The obtained PMMA nanocomposites possess high transparency and show strong upconversion photoluminescence properties, which promises great opportunities for application in 3D display and related optoelectronic fields. This strategy could also be applied to fabricate other kinds of functional transparent polymer nanocomposites with inorganic nanoparticles uniformly dispersed.

12.
Int J Biol Macromol ; 252: 126448, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625741

RESUMO

A versatile foam based on Schiff base crosslinking of oxidized nanofibrillated cellulose (ONFC) with amino modified graphene oxide (NGO) and chitosan (CS) was prepared for the efficacious selective removal of anionic dyes. (3-aminopropyl) triethoxysilane (APTES) was employed as a surface modifier to yield an amino modified graphene oxide (NGO). Meanwhile, ONFC was obtained via a periodate oxidation process to produce dialdehyde groups. Thus, the Schiff base crosslinking of ONFC with NGO and CS enabled to be readily accomplished, producing a versatile NGO/ONFC/CS foam. Systematical characterizations confirmed the successful covalent crosslinking and formation of NGO/ONFC/CS foams. Selective adsorption of Allura Red (AR) and orange G (OG) over cationic dye methylene blue (MB) by NGO/ONFC/CS was confirmed. It was found the maximum adsorption capacities of AR and OG at 303 K were 416.7 and 300.5 mg g-1, while it was 14.60 mg g-1 for MB. Thus, the new Schiff base crosslinked NGO/ONFC/CS paves the way for developing versatile graphene based foams in the applications of water treatment.


Assuntos
Celulose Oxidada , Quitosana , Grafite , Poluentes Químicos da Água , Corantes , Bases de Schiff , Adsorção , Azul de Metileno
13.
Polymers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447426

RESUMO

Anisotropic thermally conductive composites are very critical for precise thermal management of electronic devices. In this work, in order to prepare a composite with significant anisotropic thermal conductivity, polyamide 12/styrene-acrylic copolymer-boron nitride (PA12/SA-BN) composites with macro and micro double anisotropic structures were fabricated successfully using 3D printing and micro-shear methods. The morphologies and thermally conductive properties of composites were systematically characterized via SEM, XRD, and the laser flash method. Experimental results indicate that the through-plane thermal conductivity of the composite is 4.2 W/(m·K) with only 21.4 wt% BN, which is five times higher than that of the composite with randomly oriented BN. Simulation results show that the macro-anisotropic structure of the composite (caused by the selective distribution of BN) as well as the micro-anisotropic structure (caused by the orientation structure of BN) both play critical roles in spreading heat along the specified direction. Therefore, as-obtained composites with double anisotropic structures possess great potential for the application inefficient and controllable thermal management in various fields.

14.
J Phys Chem Lett ; 14(21): 5077-5084, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227451

RESUMO

Highly ordered TiO2 nanotube arrays (TNTAs) and their heterostructure nanocomposites by structural engineering design were utilized as heterogeneous photocatalysts for highly efficient broadband photoinduced controlled radical polymerization (photoCRP), including photoATRP and PET-RAFT. Highly efficient broadband UV-visible light responsive photoCRP was achieved by combining the acceleration effects of electron transfer derived from the distinctive highly ordered nanotube structure of TNTAs and the localized surface plasmon resonance (LSPR) effect combined with the formation of the Schottky barrier via modification of Au nanoparticles. This polymerization system was capable to polymerize acrylate and methacrylate monomers with high conversion, "living" chain-ends, tightly regulated molecular weights, and outstanding temporal control properties. The heterogeneous nature of the photocatalysts enabled simple separation and effective reusability in subsequent polymerizations. These results highlight the modular design of highly efficient catalysts to optimize the controlled radical polymerization process.

15.
ACS Macro Lett ; 12(1): 26-32, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36541821

RESUMO

Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods.

16.
Macromol Rapid Commun ; 44(3): e2200693, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36250510

RESUMO

Multiple and two-way reversible shape memory polymers (M/2W-SMPs) are highly promising for many fields due to large deformation, lightweight, strong recovery stress, and fast response rates. Herein, a semi-crystalline block poly(urethane-urea-amide) elastomers (PUUAs) are prepared by the copolymerization of isocyanate-terminated polyurethane (OPU) and amino-terminated oligomeric polyamide-1212 (OPA). PUUAs, composed of OPA as stationary phase and PTMEG as reversible phase, exhibit excellent rigidity, flexibility, and resilience, and cPUUA-C7 -S25 exhibits the best tensile property with strength of 10.3 MPa and elongation at break of 360.2%. Besides, all the PUUAs possess two crystallization/melting temperatures and a glass transition temperature, which endow PUUAs with multiple and reversible two-way shape memory effect (M/2W-SME). Physically crosslinked PUUA-C0 -S25 exhibits excellent dual and triple shape memory, and micro chemically crosslinked cPUUA-C7 -S25 further shows quadruple shape memory behavior. Additionally, both PUUA-C0 -S25 and cPUUA-C7 -S25 have 2W-SME. Intriguingly, cPUUA-C7 -S25 can achieve a higher temperature (up to 165 °C) SME, which makes it suitable for more complex and changeable applications. Based on the advantages of M/2W-SME, a temperature-responsive application scenario where PUUAs can transform spontaneously among different shapes is designed. These unique M/2W-SME and high-temperature SME will enable the applications of high-temperature sensors, actuators, and aerospace equipment.


Assuntos
Elastômeros , Polímeros , Polímeros/química , Amidas , Ureia , Poliuretanos/química
17.
ACS Macro Lett ; 11(11): 1298-1305, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326145

RESUMO

Owing to the benefits of using natural or artificial light sources as a stimulus, photoinduced reversible-deactivation radical polymerization (photoRDRP) techniques have been recognized to be a powerful "green" platform for the preparation of well-defined polymers. However, the development of highly efficient visible light-induced photoRDRP processes in aqueous dispersed media remains a challenge due to light scattering and refraction by monomer droplets or colloidal particles. In this work, an efficient green photocatalyst, carbon quantum dots (CQDs), was introduced to visible light-mediated miniemulsion atom transfer radical polymerization (ATRP), leading to highly efficient polymerizations with reaction rates (>80% monomer conversion within 1 h) much higher than in previous studies. This heterogeneous photocatalytic system is presumed to involve three catalytic cycles in (i) the aqueous phase, (ii) the oil-water interface, and (iii) the monomer droplets. The effect of different polymerization parameters on the polymerization reaction was investigated, including the amounts of surfactant and CQDs, CuBr2 dosage, and solid content. Excellent temporal control of the polymerization was illustrated by "ON/OFF" polymerizations, and natural sunlight was also used as an energy source. This novel CQDs-catalyzed miniemulsion photoATRP process may be easily extended to other aqueous dispersion RDRP systems. As an extension of our previous work (J. Am. Chem. Soc. 2022, 144 (22), 9817-9826) we also developed a "one-pot" method for the rapid preparation of heterogeneous hydrogels.


Assuntos
Pontos Quânticos , Polimerização , Carbono , Luz , Catálise
18.
J Phys Chem Lett ; 13(46): 10823-10829, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36382898

RESUMO

Silver nanocrystal arrays had attracted much attention due to the unique plasmonic effect of their ordered nanostructure and the synergy among adjacent nanocrystals. Conventional preparation methods had several limitations, such as high cost, harsh preparation conditions, and complicated influencing factors, which could not be employed to fabricate the nanocrystal arrays in highly controlled fashion. To solve these issues, we reported ordered arrays of different Ag nanocrystals with precise control prepared by utilizing amphiphilic star-like poly(4-vinylpyridine)-block-polystyrene diblock copolymers as nanoreactors synthesized by sequential atom transfer radical polymerization. Moreover, this unimolecular nanoreactor method based on star-like copolymers with stable and predesigned nanostructures was proved to be a universal approach to prepare other nanocrystal arrays. This strategy had low cost, simple process flow, wide applicability, and structural stability that could fabricate nanocrystal array with precise control and continuously prepare more complex nanostructure units in a large scale to meet different functions and applications.

19.
Polymers (Basel) ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432932

RESUMO

The development of semi-aromatic polyamides with excellent mechanical properties has always been a popular research avenue. In this work, the semi-aromatic polyamide 12T (PA12T) with the maximum tensile strength of 465.5 MPa was prepared after stretching at 210 °C 4.6 times. Wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) were used to characterize the structural evolution of semi-aromatic polyamide 12T (PA12T) after stretching at different stretching temperatures and stretching ratios. The formation mechanism of this change in mechanical properties was investigated from different aspects of the aggregated structure such as crystal morphology, crystal orientation and crystallinity. The relevant characterization results show that the crystal structure, crystal orientation and crystallinity of PA12T were the highest when the sample was pre-stretched at 210 °C, which is crucial for improving the mechanical properties of PA12T. These findings will provide important guidance for the preparation of polymer materials with excellent mechanical properties.

20.
Small ; 18(50): e2205014, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310419

RESUMO

Luminescent materials are indispensable for applications in lighting, displays and photovoltaics, which can transfer, absorb, store and utilize light energy. Their performance is closely related with their size and morphologies, exact atomic arrangement, and local configuration about photofunctional centers. Advanced electron microscopy-based techniques have enabled the possibility to study nanostructures with atomic resolution. Especially, with the advanced micro-electro-mechanical systems, it is able to characterize the luminescent materials at the atomic scale under various environments, providing a deep understanding of the luminescent mechanism. Accordingly, this review summarizes the recent achievements of microscopic study to directly image the microstructure and local environment of activators in lanthanide and manganese (Ln/Mn2+ )-doped luminescent materials, including: 1) bulk materials, the typical systems are nitride/oxynitride phosphors; and 2) nanomaterials, such as nanocrystals (hexagonal-phase NaLnF4 and perovskite) and 2D nanosheets (Ca2 Ta3 O10 and MoS2 ). Finally, the challenges and limitations are highlighted, and some possible solutions to facilitate the developments of advanced luminescent materials are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA