Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 112(6): 959-971.e8, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266644

RESUMO

For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Fosforilação , Encéfalo/metabolismo , Neurônios/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Piruvatos/metabolismo , Genes Precoces
2.
Annu Rev Pharmacol Toxicol ; 64: 507-526, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37722721

RESUMO

Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.


Assuntos
Sistemas de Liberação de Medicamentos , Proteoma , Humanos , Tecnologia
3.
Nature ; 623(7986): 387-396, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914931

RESUMO

Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold-Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.


Assuntos
Coração , Reflexo , Células Receptoras Sensoriais , Síncope , Nervo Vago , Humanos , Área Postrema , Bradicardia/complicações , Bradicardia/fisiopatologia , Baixo Débito Cardíaco/complicações , Baixo Débito Cardíaco/fisiopatologia , Ecocardiografia , Coração/fisiologia , Frequência Cardíaca , Hipotensão/complicações , Hipotensão/fisiopatologia , Fluxometria por Laser-Doppler , Rede Nervosa , Reflexo/fisiologia , Células Receptoras Sensoriais/fisiologia , Análise da Expressão Gênica de Célula Única , Síncope/complicações , Síncope/etiologia , Nervo Vago/citologia , Nervo Vago/fisiologia
4.
Nature ; 621(7977): 138-145, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587337

RESUMO

Maintaining body temperature is calorically expensive for endothermic animals1. Mammals eat more in the cold to compensate for energy expenditure2, but the neural mechanism underlying this coupling is not well understood. Through behavioural and metabolic analyses, we found that mice dynamically switch between energy-conservation and food-seeking states in the cold, the latter of which are primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we used whole-brain c-Fos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes under cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons selectively recapitulated food seeking under cold conditions whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch that promotes food-seeking behaviours under cold but not warm conditions. Furthermore, these behaviours are mediated by a Xi-to-nucleus accumbens projection. Our results establish Xi as a key region in the control of cold-induced feeding, which is an important mechanism in the maintenance of energy homeostasis in endothermic animals.


Assuntos
Temperatura Corporal , Temperatura Baixa , Comportamento Alimentar , Tálamo , Animais , Camundongos , Temperatura Corporal/fisiologia , Mapeamento Encefálico , Cálcio/metabolismo , Comportamento Alimentar/fisiologia , Metabolismo Energético/fisiologia , Tálamo/anatomia & histologia , Tálamo/citologia , Tálamo/fisiologia , Optogenética , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Homeostase/fisiologia , Termogênese/fisiologia
5.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993270

RESUMO

For decades, the expression of immediate early genes (IEGs) such as c- fos has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity (i.e., inhibition). Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected neuronal inhibition across the brain induced by a wide range of factors including general anesthesia, sensory experiences, and natural behaviors. Thus, as an in vivo marker for neuronal inhibition, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.

6.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993706

RESUMO

Maintaining body temperature is calorically expensive for endothermic animals. Mammals eat more in the cold to compensate for energy expenditure, but the neural mechanism underlying this coupling is not well understood. Through behavioral and metabolic analyses, we found that mice dynamically switch between energy conservation and food-seeking states in the cold, the latter of which is primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we use whole-brain cFos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes in cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons recapitulated cold-induced feeding, whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch promoting food-seeking behaviors in cold but not warm conditions. Furthermore, these behaviors are mediated by a Xi to nucleus accumbens projection. Our results establish Xi as a key region for controlling cold-induced feeding, an important mechanism for maintaining energy homeostasis in endothermic animals.

7.
STAR Protoc ; 3(4): 101778, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36313539

RESUMO

Here, we provide a protocol to visualize on-target specific drug binding in mammalian tissue with cellular resolution. By combining tissue clearing and click chemistry, this protocol allows fluorescence tagging of covalent drug binding in situ. In addition, the protocol is compatible with molecular marker staining for cell type identifications. For complete details on the use and execution of this protocol, please refer to Pang et al. (2022).


Assuntos
Química Click , Mamíferos , Animais , Química Click/métodos , Coloração e Rotulagem
8.
Clin Transl Med ; 12(8): e1024, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36030504
9.
Cell ; 185(10): 1793-1805.e17, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483372

RESUMO

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.


Assuntos
Química Click , Imagem Óptica , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Mamíferos , Camundongos , Imagem Óptica/métodos
10.
Nat Methods ; 19(4): 479-485, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347322

RESUMO

The recent development of solvent- and polymer-based brain-clearing techniques has advanced our ability to visualize the mammalian nervous system in three dimensions. However, it remains challenging to image the mammalian body en bloc. Here we developed HYBRiD (hydrogel-based reinforcement of three-dimensional imaging solvent-cleared organs (DISCO)), by recombining components of organic- and polymer-based clearing pipelines. We achieved high transparency and protein retention, as well as compatibility with direct fluorescent imaging and immunostaining in cleared mammalian bodies. Using parvalbumin- and somatostatin-Cre models, we demonstrated the utility of HYBRiD for whole-body imaging of genetically encoded fluorescent reporters without antibody enhancement of signals in newborn and juvenile mice. Using K18-hACE2 transgenic mice, HYBRiD enabled perfusion-free clearing and visualization of SARS-CoV-2 infection in a whole mouse chest, revealing macroscopic and microscopic features of viral pathology in the same sample. HYBRiD offers a simple and universal solution to visualize large heterogeneous body parts or entire animals for basic and translational research.


Assuntos
COVID-19 , Hidrogéis , Animais , Imageamento Tridimensional/métodos , Mamíferos , Camundongos , Polímeros , SARS-CoV-2 , Solventes
11.
ACS Chem Biol ; 14(12): 2557-2563, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31617999

RESUMO

Abscisic acid (ABA) is a key phytohormone with diverse functions in plants, and its signal transduction is mainly mediated by ABA receptors termed PYR/PYL/RCARs (hereafter referred to as PYLs) through the PYLs-PP2Cs-SnRK2s regulatory systems. However, the model failed to account for the roles of some important known regulators of ABA physiology. Given the central role of PYLs in ABA signal transduction, we therefore speculated that ABA receptors PYLs might be involved in regulatory pathways other than PP2Cs. Thus, a comprehensive analysis of PYLs-interacting partners could greatly facilitate the identification of unknown regulatory pathways, advancing our knowledge of the ABA signaling mechanism. Herein, we present a strategy involving covalent chemical capture coupled with HPLC-MS/MS analysis, to profile PYL5-interacting partners in plant cell lysates. With this strategy, three new PYL5-interacting partners, ubiquitin receptor RAD23C, COP9 signalosome complex subunit 1 (CSN1), and cyclase-associated protein 1 (CAP1), along with their key binding sites with PYL5 were identified. Among these proteins, CAP1 was verified to interact with PYL5 both in vitro and in vivo. The discovery of a new PYL5 binding partner showed the versatility of covalent chemical cross-linking and laid the foundation for future efforts to further elucidate the ABA signaling mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Cromatografia Líquida de Alta Pressão , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Ligação Proteica , Espectrometria de Massas em Tandem
12.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554687

RESUMO

Virus-encoded proteases play diverse roles in the efficient replication of enterovirus 71 (EV71), which is the causative agent of human hand, foot, and mouth disease (HFMD). However, it is unclear how host proteases affect viral proliferation. Here, we designed activity-based probes (ABPs) based on an inhibitor of the main EV71 protease (3Cpro), which is responsible for the hydrolysis of the EV71 polyprotein, and successfully identified host candidates that bind to the ABPs. Among the candidates, the host cysteine protease autophagy-related protein 4 homolog B (ATG4B), a key component of the autophagy machinery, was demonstrated to hydrolytically process the substrate of EV71 3Cpro and had activity comparable to that of the viral protease. Genetic disruption of ATG4B confirmed that the enzyme is indispensable for viral proliferation in vivo Our results not only further the understanding of host-virus interactions in EV71 biology but also provide a sample for the usage of activity-based proteomics to reveal host-pathogen interactions.IMPORTANCE Enterovirus 71 (EV71), one of the major pathogens of human HFMD, has caused outbreaks worldwide. How EV71 efficiently assesses its life cycle with elaborate interactions with multiple host factors remains to be elucidated. In this work, we deconvoluted that the host ATG4B protein processes the viral polyprotein with its cysteine protease activity and helps EV71 replicate through a chemical biology strategy. Our results not only further the understanding of the EV71 life cycle but also provide a sample for the usage of activity-based proteomics to reveal host-pathogen interactions.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proliferação de Células/fisiologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano A/metabolismo , Proteases Virais 3C , Proteínas Relacionadas à Autofagia/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cisteína Endopeptidases/genética , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/enzimologia , Enterovirus Humano A/crescimento & desenvolvimento , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/fisiologia , Modelos Moleculares , Conformação Proteica , Proteoma , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
13.
Org Biomol Chem ; 17(26): 6369-6373, 2019 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-31215585

RESUMO

Protein-protein interactions (PPIs) are indispensable in almost all cellular processes. Probing of complex PPIs provides new insights into the biological system of interest and paves the way for the development of therapeutics. Herein, we report a strategy for the capture of protein-protein interactions using photoaffinity palladium reagents. First, the palladium-mediated reagent site specifically transferred a photoaffinity modified aryl group to the designated cysteine residue. Next, the photoaffinity group was activated by UV radiation to trap the proximal protein residue for the formation of a crosslink. This strategy was used to capture the PYL-ABA-PP2C interaction, which is at the core of the abscisic acid (ABA) signalling pathway. Our results indicated that this palladium-mediated strategy can serve as an alternative for incorporating an increasing number of diverse substrates for protein crosslinking through cysteine modifications and can be explored for use in mapping protein-peptide or protein-protein interaction surfaces and in trapping potential interacting partners.


Assuntos
Complexos de Coordenação/química , Paládio/química , Marcadores de Fotoafinidade/química , Proteínas/química , Complexos de Coordenação/síntese química , Cisteína/química , Estrutura Molecular , Marcadores de Fotoafinidade/síntese química , Ligação Proteica , Propriedades de Superfície , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA