Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474551

RESUMO

Essential oils are well known for their biological properties, making them useful for the treatment of various diseases. However, because of their poor stability and high volatility, their potential cannot be fully exploited. The use of nanoformulations to deliver essential oils can solve these critical issues and amplify their biological activities. We characterized an essential oil from Satureja thymbra via GC-MS and HPLC-DAD to provide qualitative and quantitative data. The essential oil was formulated in phospholipid vesicles which were characterized for size, surface charge, and storage stability. The entrapment efficiency was evaluated as the quantification of the major monoterpenoid phenols via HPLC-DAD. The morphological characterization of the vesicles was carried out via cryo-TEM and SAXS analyses. The essential oil's antioxidant potential was assayed via two colorimetric tests (DPPH• and FRAP) and its cytocompatibility was evaluated in HaCaT skin cell cultures. The results showed that the nanoformulations developed for the loading of S. thymbra essential oil were below 100 nm in size, predominantly unilamellar, stable in storage, and had high entrapment efficiencies. The vesicles also displayed antioxidant properties and high cytocompatibility. These promising findings pave the way for further investigation of the therapeutic potential of S. thymbra nanoformulations upon skin application.


Assuntos
Lamiaceae , Óleos Voláteis , Satureja , Óleos Voláteis/análise , Antioxidantes , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Pharmaceutics ; 15(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242782

RESUMO

Several studies have demonstrated the effectiveness of plant extracts against various diseases, especially skin disorders; namely, they exhibit overall protective effects. The Pistachio (Pistacia vera L.) is known for having bioactive compounds that can effectively contribute to a person's healthy status. However, these benefits may be limited by the toxicity and low bioavailability often inherent in bioactive compounds. To overcome these problems, delivery systems, such as phospholipid vesicles, can be employed. In this study, an essential oil and a hydrolate were produced from P. vera stalks, which are usually discarded as waste. The extracts were characterized by liquid and gas chromatography coupled with mass spectrometry and formulated in phospholipid vesicles intended for skin application. Liposomes and transfersomes showed small size (<100 nm), negative charge (approximately -15 mV), and a longer storage stability for the latter. The entrapment efficiency was determined via the quantification of the major compounds identified in the extracts and was >80%. The immune-modulating activity of the extracts was assayed in macrophage cell cultures. Most interestingly, the formulation in transfersomes abolished the cytotoxicity of the essential oil while increasing its ability to inhibit inflammatory mediators via the immunometabolic citrate pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA