Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3102, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248221

RESUMO

How climate change in the middle to late Holocene has influenced the early human migrations in Central Asian Steppe remains poorly understood. To address this issue, we reconstructed a multiproxy-based Holocene climate history from the sediments of Kanas Lake and neighboring Tiewaike Lake in the southern Altai Mountains. The results show an exceptionally warm climate during ~6.5-3.6 kyr is indicated by the silicon isotope composition of diatom silica (δ30Sidiatom) and the biogenic silica (BSi) content. During 4.7-4.3 kyr, a peak in δ30Sidiatom reflects enhanced lake thermal stratification and periodic nutrient limitation as indicated by concomitant decreasing BSi content. Our geochemical results indicate a significantly warm and wet climate in the Altai Mountain region during 6.5-3.6 kyr, corresponding to the Altai Holocene Climatic Optimum (AHCO), which is critical for promoting prehistoric human population expansion and intensified cultural exchanges across the Central Asian steppe during the Bronze Age.

2.
Water Res ; 224: 119053, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088771

RESUMO

Due to the depositional environment, river deltas are said to act as filters and sinks for pollutants. However, many deltas are also densely populated and rapidly urbanizing, creating new and increased sources of pollutants. These sources pose the risk of tipping these environments from pollution sinks to sources, to the world's oceans. We provide detailed seasonal and annual assessments of metal contaminants in riverine suspended particulate matter (SPM) across the densely populated Red River Delta (RRD), Vietnam. The global contributions of elements from the RRD are all <0.2% with many elemental fluxes <0.01%, suggesting the RRD is not a major source of elemental pollution to the ocean. However, 'hotspots' of metal pollution due to human activity and the impacts of tropical storm Son Tinh (July 2018) exceed both national level regulations and international measures of toxicity (e.g. enrichment factors). There is widespread 'extreme pollution' of Cd (enrichment factor >40) and concentrations of As higher than national regulation limits (>17 mg/Kg) at all sites other than one upstream, agricultural-dominated tributary in the dry season. These 'hotspots' are characterised by high inputs of organic matter (e.g. manure fertiliser and urban wastewater), which influences elemental mobility in the particulate and dissolved phases, and are potentially significant sources of pollution downstream. In addition, in the marine and fresh water mixing zone, salinity effects metal complexation with organic matter increasing metals in the particulate phase. Our calculations indicate that the delta is currently acting as a pollutant sink (as determined by high levels of pollutant deposition ∼50%). However, increased in-washing of pollutants and future projected increases in monsoon intensity, saline intrusion, and human activity could shift the delta to become a source of toxic metals. We show the importance of monitoring environmental parameters (primarily dissolved organic matter and salinity) in the RRD to assess the risk of transport and accumulation of toxic metals in the delta sediments, which can lead to net-increases in anthropogenic pollution in the coastal zone and the incorporation of toxic elements in the food chain.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Cádmio , Monitoramento Ambiental , Fertilizantes , Sedimentos Geológicos , Humanos , Esterco , Metais Pesados/análise , Material Particulado , Oligoelementos/análise , Vietnã , Águas Residuárias , Poluentes Químicos da Água/análise
3.
Proc Natl Acad Sci U S A ; 117(44): 27211-27217, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077588

RESUMO

Lake Baikal, lying in a rift zone in southeastern Siberia, is the world's oldest, deepest, and most voluminous lake that began to form over 30 million years ago. Cited as the "most outstanding example of a freshwater ecosystem" and designated a World Heritage Site in 1996 due to its high level of endemicity, the lake and its ecosystem have become increasingly threatened by both climate change and anthropogenic disturbance. Here, we present a record of nutrient cycling in the lake, derived from the silicon isotope composition of diatoms, which dominate aquatic primary productivity. Using historical records from the region, we assess the extent to which natural and anthropogenic factors have altered biogeochemical cycling in the lake over the last 2,000 y. We show that rates of nutrient supply from deep waters to the photic zone have dramatically increased since the mid-19th century in response to changing wind dynamics, reduced ice cover, and their associated impact on limnological processes in the lake. With stressors linked to untreated sewage and catchment development also now impacting the near-shore region of Lake Baikal, the resilience of the lake's highly endemic ecosystem to ongoing and future disturbance is increasingly uncertain.


Assuntos
Água Doce/química , Lagos/química , Nutrientes/análise , Mudança Climática , Diatomáceas , Ecossistema , Ciência Ambiental/métodos , Sedimentos Geológicos , Camada de Gelo , Lagos/análise , Federação Russa , Sibéria
4.
PLoS One ; 14(2): e0213413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818378

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0208765.].

5.
PLoS One ; 13(12): e0208765, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566423

RESUMO

Lake Baikal has been experiencing limnological changes from recent atmospheric warming since the 1950s, with rising lake water temperatures, reduced ice cover duration and reduced lake surface-water mixing due to stronger thermal stratification. This study uses lake sediment cores to reconstruct recent changes (c. past 20 years) in Lake Baikal's pelagic diatom communities relative to previous 20th century diatom assemblage records collected in 1993 and 1994 at the same locations in the lake. Recent changes documented within the core-top diatom records agree with predictions of diatom responses to warming at Lake Baikal. Sediments in the south basin of the lake exhibit clear temporal changes, with the most rapid occurring in the 1990's with shifts towards higher abundances of the cosmopolitan Synedra acus and a decline in endemic species, mainly Cyclotella minuta and Stephanodiscus meyerii and to a lesser extent Aulacoseira baicalensis and Aulacoseira skvortzowii. The north basin, in contrast, shows no evidence of recent diatom response to lake warming despite marked declines in north basin ice cover in recent decades. This study also shows no diatom-inferred evidence of eutrophication from deep water sediments. However, due to the localised impacts seen in areas of Lake Baikal's shoreline from nutrient pollution derived from inadequate sewage treatment, urgent action is vital to prevent anthropogenic pollution extending into the open waters.


Assuntos
Mudança Climática , Diatomáceas , Ecossistema , Lagos , Sedimentos Geológicos , Modelos Teóricos , Sibéria , Análise Espacial , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA