Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099014

RESUMO

Cell migration is a complex process underlying physiological and pathological processes such as brain development and cancer metastasis. The autophagy-linked FYVE protein (ALFY; also known as WDFY3), an autophagy adaptor protein known to promote clearance of protein aggregates, has been implicated in brain development and neural migration during cerebral cortical neurogenesis in mice. However, a specific role of ALFY in cell motility and extracellular matrix adhesion during migration has not been investigated. Here, we reveal a novel role for ALFY in the endocytic pathway and in cell migration. We show that ALFY localizes to RAB5- and EEA1-positive early endosomes in a PtdIns(3)P-dependent manner and is highly enriched in cellular protrusions at the leading and lagging edge of migrating cells. We find that cells lacking ALFY have reduced attachment and altered protein levels and glycosylation of integrins, resulting in the inability to form a proper leading edge and loss of directional cell motility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Extensões da Superfície Celular , Animais , Movimento Celular , Extensões da Superfície Celular/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Camundongos
2.
Sci Rep ; 10(1): 4528, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161285

RESUMO

Dysregulated cholesterol homeostasis promotes the pathology of atherosclerosis, myocardial infarction and strokes. Cellular cholesterol is mainly regulated at the transcriptional level by SREBP2, but also through uptake of extracellular cholesterol from low density lipoproteins (LDL) via expression of LDL receptors (LDLR) at the cell surface. Identification of the mechanisms involved in regulation of these processes are thus key to understand the pathology of coronary artery disease. Here, we identify the large and poorly characterized BEACH domain protein Neurobeachin-like (NBEAL) 1 as a Golgi- associated protein required for regulation of cholesterol metabolism. NBEAL1 is most abundantly expressed in arteries. Genetic variants in NBEAL1 are associated with decreased expression of NBEAL1 in arteries and increased risk of coronary artery disease in humans. We show that NBEAL1 regulates cholesterol metabolism by modulating LDLR expression in a mechanism involving interaction with SCAP and PAQR3 and subsequent SREBP2-processing. Thus, low expression of NBEAL1 may lead to increased risk of coronary artery disease by downregulation of LDLR levels.


Assuntos
Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Colesterol/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Suscetibilidade a Doenças , Locos de Características Quantitativas , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Biomarcadores , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos
3.
Autophagy ; 15(10): 1845-1847, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251109

RESUMO

Removal of damaged mitochondria is vital for cellular homeostasis especially in non-dividing cells, like neurons. Damaged mitochondria that cannot be repaired by the ubiquitin-proteasomal system are cleared by a form of selective autophagy known as mitophagy. Following damage, mitochondria become labelled with 'eat-me' signals that selectively determine their degradation. Recently, we identified the mitochondrial matrix proteins, NIPSNAP1 (nipsnap homolog 1) and NIPSNAP2 as 'eat-me' signals for damaged mitochondria. NIPSNAP1 and NIPSNAP2 accumulate on the mitochondrial outer membrane following mitochondrial depolarization, recruiting autophagy receptors and adaptors, as well as human Atg8 (autophagy-related 8)-family proteins to facilitate mitophagy. The NIPSNAPs allow a sustained recruitment of SQSTM1-like receptors (SLRs) to ensure efficient mitophagy. Zebrafish lacking Nipsnap1 show decreased mitophagy in the brain coupled with increased ROS production, loss of dopaminergic neurons and strongly reduced locomotion.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Mitofagia/genética , Animais , Animais Geneticamente Modificados , Autofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Ligação Proteica , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/genética , Peixe-Zebra
4.
Dev Cell ; 49(4): 509-525.e12, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30982665

RESUMO

The clearance of damaged or dysfunctional mitochondria by selective autophagy (mitophagy) is important for cellular homeostasis and prevention of disease. Our understanding of the mitochondrial signals that trigger their recognition and targeting by mitophagy is limited. Here, we show that the mitochondrial matrix proteins 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) and NIPSNAP2 accumulate on the mitochondria surface upon mitochondrial depolarization. There, they recruit proteins involved in selective autophagy, including autophagy receptors and ATG8 proteins, thereby functioning as an "eat me" signal for mitophagy. NIPSNAP1 and NIPSNAP2 have a redundant function in mitophagy and are predominantly expressed in different tissues. Zebrafish lacking a functional Nipsnap1 display reduced mitophagy in the brain and parkinsonian phenotypes, including loss of tyrosine hydroxylase (Th1)-positive dopaminergic (DA) neurons, reduced motor activity, and increased oxidative stress.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Mitofagia/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra
5.
EMBO Rep ; 19(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437695

RESUMO

Trafficking of mammalian ATG9A between the Golgi apparatus, endosomes and peripheral ATG9A compartments is important for autophagosome biogenesis. Here, we show that the membrane remodelling protein SNX18, previously identified as a positive regulator of autophagy, regulates ATG9A trafficking from recycling endosomes. ATG9A is recruited to SNX18-induced tubules generated from recycling endosomes and accumulates in juxtanuclear recycling endosomes in cells lacking SNX18. Binding of SNX18 to Dynamin-2 is important for ATG9A trafficking from recycling endosomes and for formation of ATG16L1- and WIPI2-positive autophagosome precursor membranes. We propose a model where upon autophagy induction, SNX18 recruits Dynamin-2 to induce budding of ATG9A and ATG16L1 containing membranes from recycling endosomes that traffic to sites of autophagosome formation.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Dinamina II/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Proteínas de Transporte/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Proteínas de Ligação a Fosfato , Ligação Proteica , Transporte Proteico
6.
Nat Commun ; 7: 13889, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004827

RESUMO

A fundamental question is how autophagosome formation is regulated. Here we show that the PX domain protein HS1BP3 is a negative regulator of autophagosome formation. HS1BP3 depletion increased the formation of LC3-positive autophagosomes and degradation of cargo both in human cell culture and in zebrafish. HS1BP3 is localized to ATG16L1- and ATG9-positive autophagosome precursors and we show that HS1BP3 binds phosphatidic acid (PA) through its PX domain. Furthermore, we find the total PA content of cells to be significantly upregulated in the absence of HS1BP3, as a result of increased activity of the PA-producing enzyme phospholipase D (PLD) and increased localization of PLD1 to ATG16L1-positive membranes. We propose that HS1BP3 regulates autophagy by modulating the PA content of the ATG16L1-positive autophagosome precursor membranes through PLD1 activity and localization. Our findings provide key insights into how autophagosome formation is regulated by a novel negative-feedback mechanism on membrane lipids.


Assuntos
Autofagia/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Ácidos Fosfatídicos/metabolismo , Animais , Animais Geneticamente Modificados , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Cortactina/metabolismo , Células HEK293 , Células HeLa , Humanos , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/química , Fosfolipase D/metabolismo , Domínios Proteicos , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
7.
EMBO Rep ; 15(5): 557-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24668264

RESUMO

Several autophagy proteins contain an LC3-interacting region (LIR) responsible for their interaction with Atg8 homolog proteins. Here, we show that ALFY binds selectively to LC3C and the GABARAPs through a LIR in its WD40 domain. Binding of ALFY to GABARAP is indispensable for its recruitment to LC3B-positive structures and, thus, for the clearance of certain p62 structures by autophagy. In addition, the crystal structure of the GABARAP-ALFY-LIR peptide complex identifies three conserved residues in the GABARAPs that are responsible for binding to ALFY. Interestingly, introduction of these residues in LC3B is sufficient to enable its interaction with ALFY, indicating that residues outside the LIR-binding hydrophobic pockets confer specificity to the interactions with Atg8 homolog proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Linhagem Celular Tumoral , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/ultraestrutura
8.
Blood ; 120(4): 847-57, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22692509

RESUMO

Arsenic in the form of arsenic trioxide (ATO) is used as a therapeutic drug for treatment of acute promyelocytic leukemia (APL). The mechanism by which this agent cures this disease was previously shown to involve direct interactions between ATO and the promyelocytic leukemia protein (PML), as well as accelerated degradation of the APL-associated fusion oncoprotein PML/retinoic acid receptor α (RARA). Here we investigated the fate of PML-generated nuclear structures called PML bodies in ATO-treated cells. We found that ATO inhibits formation of progeny PML bodies while it stabilizes cytoplasmic precursor compartments, referred to as cytoplasmic assemblies of PML and nucleoporins (CyPNs), after cell division. This block in PML body recycling is readily detected at pharmacologic relevant ATO concentrations (0.02-0.5µM) that do not cause detectable cell-cycle defects, and it does not require modification of PML by SUMOylation. In addition, PML and PML/RARA carrying mutations previously identified in ATO-resistant APL patients are impeded in their ability to become sequestered within CyPNs. Thus, ATO may inhibit nuclear activities of PML and PML/RARA in postmitotic cells through CyPN-dependent cytoplasmic sequestration.


Assuntos
Antineoplásicos/farmacologia , Arsenicais/farmacologia , Citoplasma/metabolismo , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Óxidos/farmacologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Trióxido de Arsênio , Ciclo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Imunofluorescência , Humanos , Leucemia Promielocítica Aguda/genética , Mutação/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína da Leucemia Promielocítica , Reciclagem , Sumoilação/efeitos dos fármacos , Células Tumorais Cultivadas
9.
Free Radic Res ; 45(5): 600-10, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21381898

RESUMO

γ-Glutamyltransferase (GGT) plays a significant role in antioxidant defence and participates in the metabolism of glutathione (GSH). The enzyme is up-regulated after acute oxidative stress and during pro-oxidant periods, but the underlying regulatory mechanisms are not well known. The present investigation studied whether the endogenous reactive oxygen species (ROS) level was a determinant for GGT expression. A substantial amount of ROS is produced through the NADPH oxidase (NOX) system and knockdown of p22phox, a sub-unit of NOX1-4, resulted not only in reduced ROS levels but also in reduced GGT expression in human endometrial carcinoma cells. Phorbol-12-myristate-13-acetate (PMA) is an activator of NOX and it was found that PMA treatment of human colon carcinoma cells both increased cellular ROS levels and subsequently up-regulated GGT expression. On the other hand, the NOX inhibitor apocynin reduced ROS levels as well as GGT expression. The GGT mRNA sub-type A was increased after PMA-induced NOX activation. These results demonstrate that ROS generated from NOX enzymes are a significant determinant for GGT expression and activity.


Assuntos
NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , gama-Glutamiltransferase/metabolismo , Acetofenonas/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Humanos , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Estresse Oxidativo , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Regulação para Cima/efeitos dos fármacos
10.
Autophagy ; 6(4): 550-2, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20364109

RESUMO

In mammalian cells, autophagosomes are transported along microtubule tracks to fuse with late endosomes or lysosomes. Autophagosomal membranes harbor the lipid phosphatidylinositol-3-phosphate (PtdIns(3)P) and phosphatidylethanolamine-conjugated ATG8/LC3/GABARAP family proteins. The small GTPase Rab7 is implicated in autophagosomal transport and fusion. We have recently reported that a previously uncharacterized protein FYVE and coiled-coil domain-containing 1 (FYCO1) functions as an adapter linking autophagosomes to microtubule plus end-directed molecular motors. FYCO1 binds to both LC3, PtdIns(3)P and Rab7, and contains a domain responsible for microtubule plus end-dependent transport. When cells are depleted for FYCO1, autophagosomes accumulate in perinuclear clusters, whereas overexpression of FYCO1 redistributes Rab7-positive vesicles to microtubule plus ends at the cell periphery. FYCO1 is likely selectively recruited to autophagosomal membranes via a mechanism involving a conformational change upon LC3-LIR interaction to expose the FYVE domain for PtdIns(3)P binding.


Assuntos
Autofagia , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Fagossomos/metabolismo , Fatores de Transcrição/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Multimerização Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/química
11.
J Cell Biol ; 188(2): 253-69, 2010 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-20100911

RESUMO

Autophagy is the main eukaryotic degradation pathway for long-lived proteins, protein aggregates, and cytosolic organelles. Although the protein machinery involved in the biogenesis of autophagic vesicles is well described, very little is known about the mechanism of cytosolic transport of autophagosomes. In this study, we have identified an adaptor protein complex, formed by the two autophagic membrane-associated proteins LC3 and Rab7 and the novel FYVE and coiled-coil (CC) domain-containing protein FYCO1, that promotes microtubule (MT) plus end-directed transport of autophagic vesicles. We have characterized the LC3-, Rab7-, and phosphatidylinositol-3-phosphate-binding domains in FYCO1 and mapped part of the CC region essential for MT plus end-directed transport. We also propose a mechanism for selective autophagosomal membrane recruitment of FYCO1.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fatores de Transcrição/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Autofagia/fisiologia , Sítios de Ligação/fisiologia , Transporte Biológico Ativo/fisiologia , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Fatores de Transcrição/genética , Vesículas Transportadoras/ultraestrutura , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
12.
J Biol Chem ; 285(8): 5941-53, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20018885

RESUMO

p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Espaço Intranuclear/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Ataxina-1 , Ataxinas , Células HeLa , Humanos , Corpos de Inclusão Intranuclear/genética , Proteínas do Tecido Nervoso/genética , Sinais de Localização Nuclear/genética , Proteínas Nucleares/genética , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Sequestossoma-1
13.
Methods Enzymol ; 452: 181-97, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19200883

RESUMO

The p62 protein, also called sequestosome 1 (SQSTM1), is a ubiquitin-binding scaffold protein that colocalizes with ubiquitinated protein aggregates in many neurodegenerative diseases and proteinopathies of the liver. The protein is able to polymerize via an N-terminal PB1 domain and can interact with ubiquitinated proteins via the C-terminal UBA domain. Also, p62/SQSTM1 binds directly to LC3 and GABARAP family proteins via a specific sequence motif. The protein is itself degraded by autophagy and may serve to link ubiquitinated proteins to the autophagic machinery to enable their degradation in the lysosome. Since p62 accumulates when autophagy is inhibited, and decreased levels can be observed when autophagy is induced, p62 may be used as a marker to study autophagic flux. Here, we present several protocols for monitoring autophagy-mediated degradation of p62 using Western blots, pulse-chase measurement of p62 half-life, immunofluorescence and immuno-electron microscopy, as well as live cell imaging with a pH-sensitive mCherry-GFP double tag. We also present data on species-specificity and map the epitopes recognized by several commercially available anti-p62 antibodies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Western Blotting , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Imunoeletrônica
14.
Free Radic Res ; 41(12): 1376-84, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18075840

RESUMO

Gamma-glutamyltransferase (GGT) plays a central role in the homeostasis of the antioxidant glutathione (GSH). The expression of GGT has been shown to be upregulated after oxidative stress, but the signalling pathways implicated remain poorly characterized. The results here show that acute exposure of CC531 cells to oxidative stress resulted in activation of Ras and augmented GGT enzyme activity, both at the transcriptional and at the translation level. Moreover, an involvement of the GGT promoter II was detected after RT-PCR and transient transfection studies. Ectopic expression of activated Ras, but not dominant negative Ras, also resulted in increased GGT promoter II transcriptional activity, an effect that was attenuated by over-expression of dominant negative mutants of Akt, p38 MAPK and MEK1. Addition of specific inhibitors of these kinases during oxidative stress diminished the activation of GGT. In conclusion, oxidative stress-induced activation of GGT involves Ras and several downstream signalling pathways.


Assuntos
Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , gama-Glutamilciclotransferase/genética , Proteínas ras/fisiologia , Animais , Cafeína/farmacologia , Carcinoma , Linhagem Celular Tumoral , Neoplasias do Colo , Cicloeximida/farmacologia , Dactinomicina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Vitamina K 3/farmacologia
15.
J Biol Chem ; 282(33): 24131-45, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17580304

RESUMO

Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Citosol , Corantes Fluorescentes , Células HeLa , Humanos , Complexos Multiproteicos , Ligação Proteica , RNA Interferente Pequeno/farmacologia , Proteína Sequestossoma-1 , Transfecção
16.
Biochim Biophys Acta ; 1760(2): 151-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16386375

RESUMO

The activity of gamma-glutamyltransferase (GGT) is frequently upregulated in tumor cells after oxidative stress and may thus increase the availability of amino acids needed for biosynthesis of the antioxidant glutathione. As gamma-radiation of tumor cells can result in oxidative stress, we investigated whether such treatments modulate the enzyme level in colon carcinoma CC531 cells. Radiation of these cells blocked cell proliferation, increased cellular size, initiated apoptosis and upregulated GGT activity and protein levels in a dose- and time-related manner. A slight but significant increase in the cellular level of reactive oxygen species (ROS) was found directly after radiation but appeared not to cause the GGT elevation. Thus, other mechanisms than cellular oxidative stress appear to be responsible for the radiation-induced upregulation of GGT. Stable transfection of activated Ras in a human colon carcinoma cell line expressing wild-type Ras resulted in an increased GGT level, while a reduced enzyme level was demonstrated in another cell line with constitutively activated Ras after stably transfection with a dominant-negative Ras mutant. Moreover, addition of specific protein kinase inhibitors that blocked downstream targets PI-3K and MEK1/2 of Ras, prior to and after radiation, attenuated the radiation-induced activation of GGT. These results support a role for Ras, being frequently activated after radiation, in regulating the level of GGT and also indicate that GGT participates in radioresistance.


Assuntos
Neoplasias do Colo/enzimologia , Raios gama , Transdução de Sinais/fisiologia , gama-Glutamiltransferase/biossíntese , Proteínas ras/fisiologia , Animais , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , MAP Quinase Quinase Quinases/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Ratos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Regulação para Cima/efeitos da radiação , gama-Glutamiltransferase/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA