Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792228

RESUMO

Vitamin D, an essential micronutrient crucial for skeletal integrity and various non-skeletal physiological functions, exhibits limited bioavailability and stability in vivo. This study is focused on the development of polyethylene glycol (PEG)-grafted phospholipid micellar nanostructures co-encapsulating vitamin D3 and conjugated with alendronic acid, aimed at active bone targeting. Furthermore, these nanostructures are rendered optically traceable in the UV-visible region of the electromagnetic spectrum via the simultaneous encapsulation of vitamin D3 with carbon dots, a newly emerging class of fluorescents, biocompatible nanoparticles characterized by their resistance to photobleaching and environmental friendliness, which hold promise for future in vitro bioimaging studies. A systematic investigation is conducted to optimize experimental parameters for the preparation of micellar nanostructures with an average hydrodynamic diameter below 200 nm, ensuring colloidal stability in physiological media while preserving the optical luminescent properties of the encapsulated carbon dots. Comprehensive chemical-physical characterization of these micellar nanostructures is performed employing optical and morphological techniques. Furthermore, their binding affinity for the principal inorganic constituent of bone tissue is assessed through a binding assay with hydroxyapatite nanoparticles, indicating significant potential for active bone-targeting. These formulated nanostructures hold promise for novel therapeutic interventions to address skeletal-related complications in cancer affected patients in the future.


Assuntos
Alendronato , Osso e Ossos , Colecalciferol , Micelas , Nanoestruturas , Colecalciferol/química , Nanoestruturas/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Alendronato/química , Polietilenoglicóis/química , Humanos , Sistemas de Liberação de Medicamentos , Luminescência , Nanopartículas/química , Portadores de Fármacos/química , Pontos Quânticos/química
2.
ACS Nano ; 17(21): 21274-21286, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37870465

RESUMO

Carbon dots are carbon-based nanoparticles renowned for their intense light-emitting capabilities covering the whole visible light range. Achieving carbon dots emitting in the red region with high efficiency is extremely relevant due to their huge potential in biological applications and in optoelectronics. Currently, photoluminescence in such an energy interval is often associated with polyheterocyclic molecular domains forming during the synthesis that, however, present low emission efficiency and issues in controlling the optical features. Here, we overcome these problems by solvothermally synthesizing carbon dots starting from Neutral Red, a common red-emitting dye, as a molecular precursor. As a result of the synthesis, such molecular fluorophore is incorporated into a carbonaceous core while retaining its original optical properties. The obtained nanoparticles are highly luminescent in the red region, with a quantum yield comparable to that of the starting dye. Most importantly, the nanoparticle carbogenic matrix protects the Neutral Red molecules from photobleaching under ultraviolet excitation while preventing aggregation-induced quenching, thus allowing solid-state emission. These advantages have been exploited to develop a fluorescence-based color conversion layer by fabricating polymer-based highly concentrated solid-state carbon dot nanocomposites. Finally, the dye-based carbon dots demonstrate both stable Fabry-Perot lasing and efficient random lasing emission in the red region.

3.
ACS Appl Mater Interfaces ; 15(28): 33322-33334, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417887

RESUMO

Inflammasome activation plays a crucial role in the progression to more severe stages of non-alcoholic fatty liver disease (NAFLD), representing a promising therapeutic target. MCC950 is a small molecule acting as a potent and specific inhibitor of the canonical and non-canonical activation of the NLRP3 inflammasome, but its short plasmatic half-life limits its use. Herein, we report, for the first time, the encapsulation of MCC950 in poly(ethylene glycol) (PEG) liposomes (LPs) that are specifically functionalized with an antibody against Frizzled 1 (FZD1), a g-coupled protein involved in the WNT pathway and overexpressed on inflammasome-activated macrophages. MCC950, encapsulated into PEG-LP formulations conjugated with an anti-FZD1 antibody, inhibits the NLRP3 inflammasome activation at concentrations 10 times lower than that of the free drug in THP-1 cells. Luminescent carbon dots (CDs) were also co-encapsulated with MCC950 in LPs to obtain optically traceable nanoformulations that have proved the enhanced ability of the targeted LPs to be internalized into THP-1 cells with respect to their nontargeted counterparts. Our results suggest that MCC950 encapsulation into targeted LPs represents a valuable strategy to achieve reformulation of the NLRP3 inhibitor, able to significantly curtail the threshold of MCC950 doses for inhibiting inflammasome activation, thus offering a new therapeutic approach.


Assuntos
Indenos , Hepatopatia Gordurosa não Alcoólica , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Lipossomos , Sulfonas/farmacologia , Disponibilidade Biológica , Lipopolissacarídeos/farmacologia , Sulfonamidas/farmacologia , Furanos , Modelos Animais de Doenças
4.
Nanomaterials (Basel) ; 13(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770335

RESUMO

Carbon Dots (CDs) are fluorescent carbon-based nanoparticles that have attracted increasing attention in recent years as environment-friendly and cost-effective fluorophores. An application that can benefit from CDs in a relatively short-term perspective is the fabrication of color-converting materials in phosphor-converted white LEDs (WLEDs). In this work we present a one-pot solvothermal synthesis of polymer-passivated CDs that show a dual emission band (in the green and in the red regions) upon blue light excitation. A purposely designed numerical approach enables evaluating how the spectroscopic properties of such CDs can be profitable for application in WLEDs emulating daylight characteristics. Subsequently, we fabricate nanocomposite coatings based on the dual color-emitting CDs via solution-based strategies, and we compare their color-converting properties with those of the simulated ones to finally accomplish white light emission. The combined numerical and experimental approach can find a general use to reduce the number of experimental trial-and-error steps required for optimization of CD optical properties for lighting application.

5.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38202535

RESUMO

Over the last decade, the attractive properties of CsPbBr3 nanoparticles (NPs) have driven ever-increasing progress in the development of synthetic procedures to obtain high-quality NPs at high concentrations. Understanding how the properties of NPs are influenced by the composition of the reaction mixture in combination with the specific synthetic methodology is crucial, both for further elucidating the fundamental characteristics of this class of materials and for their manufacturing towards technological applications. This work aims to shed light on this aspect by synthesizing CsPbBr3 NPs by means of two well-assessed synthetic procedures, namely, hot injection (HI) and ligand-assisted reprecipitation (LARP) in non-polar solvents, using PbBr2 and Cs2CO3 as precursors in the presence of already widely investigated ligands. The overall goal is to study and compare the properties of the NPs to understand how each synthetic method influences the NPs' size and/or the optical properties. Reaction composition and conditions are purposely tuned towards the production of nanocubes with narrow size distribution, high emission properties, and the highest achievable concentration. As a result, the formation of bulk crystals as precipitate in LARP limits the achievement of a highly concentrated NP solution. The size of the NPs obtained by LARP seems to be poorly affected by the ligands' nature and the excess bromide, as consequence of bromide-rich solvation agents, effectively results in NPs with excellent emission properties. In contrast, NPs synthesized by HI exhibit high reaction yield, diffusion growth-controlled size, and less striking emission properties, probably ascribed to a bromide-deficient condition.

6.
ACS Appl Mater Interfaces ; 14(31): 36038-36051, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895314

RESUMO

Carbon dots (CDs) are a family of fluorescent nanoparticles displaying a wide range of interesting properties, which make them attractive for potential applications in different fields like bioimaging, photocatalysis, and many others. However, despite many years of dedicated studies, wide variations exist in the literature concerning the reported photostability of CDs, and even the photoluminescence mechanism is still unclear. Furthermore, an increasing number of recent studies have highlighted the photobleaching (PB) of CDs under intense UV or visible light beams. PB phenomena need to be fully addressed to optimize practical uses of CDs and can also provide information on the fundamental mechanism underlying their fluorescence. Moreover, the lack of systematic studies comparing several types of CDs displaying different fluorescence properties represents another gap in the literature. In this study, we explored the optical properties of a full palette of CDs displaying a range from blue to red emissions, synthesized using different routes and varying precursors. We investigated the photostability of different CDs by observing in situ their time-resolved fluorescence degradation or optical absorption changes under equivalent experimental conditions and laser irradiation. The results about different PB kinetics clearly indicate that even CDs showing comparable emission properties may exhibit radically different resistances to PB, suggesting systematic connections between the resistance to PB, the characteristic spectral range of emission, and CD quantum yields. To exploit the PB dynamics as a powerful tool to investigate CD photophysics, we also carried out dedicated experiments in a partial illumination geometry, allowing us to analyze the recovery of the fluorescence due to diffusion. Based on the experimental results, we conclude that the nature of the CD fluorescence cannot be solely ascribable to small optically active molecules free diffusing in solution, contributing to shed light on one of the most debated issues in the photophysics of CDs.

7.
ACS Chem Neurosci ; 12(22): 4286-4301, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726377

RESUMO

Human immunodeficiency virus (HIV) can independently replicate in the central nervous system (CNS) causing neurocognitive impairment even in subjects with suppressed plasma viral load. The antiretroviral drug darunavir (DRV) has been approved for therapy of HIV-infected patients, but its efficacy in the treatment of HIV-associated neurological disorders (HAND) is limited due to the low penetration through the blood-brain barrier (BBB). Therefore, innovations in DRV formulations, based on its encapsulation in optically traceable nanoparticles (NPs), may improve its transport through the BBB, providing, at the same time, optical monitoring of drug delivery within the CNS. The aim of this study was to synthesize biodegradable polymeric NPs loaded with DRV and luminescent, nontoxic carbon dots (C-Dots) and investigate their ability to permeate through an artificial BBB and to inhibit in vitro matrix metalloproteinase-9 (MMP-9) that represents a factor responsible for the development of HIV-related neurological disorders. Biodegradable poly(lactic-co-glycolic) acid (PLGA)-based nanoformulations resulted characterized by an average hydrodynamic size less than 150 nm, relevant colloidal stability in aqueous medium, satisfactory drug encapsulation efficiency, and retained emitting optical properties in the visible region of the electromagnetic spectrum. The assay on the BBB artificial model showed that a larger amount of DRV was able to cross BBB when incorporated in the PLGA NPs and to exert an enhanced inhibition of matrix metalloproteinase-9 (MMP-9) expression levels with respect to free DRV. The overall results reveal the great potential of this class of nanovectors of DRV for an efficacious treatment of HANDs.


Assuntos
Infecções por HIV , Nanopartículas , Doenças do Sistema Nervoso , Encéfalo , Darunavir , Infecções por HIV/tratamento farmacológico , Humanos , Metaloproteinase 9 da Matriz
8.
Chemistry ; 27(7): 2371-2380, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896940

RESUMO

Efficient FRET systems are developed combining colloidal CdSe quantum dots (QDs) donors and BODIPY acceptors. To promote effective energy transfer in FRET architectures, the distance between the organic fluorophore and the QDs needs to be optimized by a careful system engineering. In this context, BODIPY dyes bearing amino-terminated functionalities are used in virtue of the high affinity of amine groups in coordinating the QD surface. A preliminary QD surface treatment with a short amine ligand is performed to favor the interaction with the organic fluorophores in solution. The successful coordination of the dye to the QD surface, accomplishing a short donor-acceptor distance, provides effective energy transfer already in solution, with efficiency of 76 %. The efficiency further increases in the solid state where the QDs and the dye are deposited as single coordinated units from solution, with a distance between the fluorophores down to 2.2 nm, demonstrating the effectiveness of the coupling strategy.

9.
Materials (Basel) ; 13(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842684

RESUMO

Carbon dots (CDs) have been progressively attracting interest as novel environmentally friendly and cost-effective luminescent nanoparticles, for implementation in light-emitting devices, solar cells, photocatalytic devices and biosensors. Here, starting from a cost-effective bottom-up synthetic approach, based on a suitable amphiphilic molecule as carbon precursor, namely cetylpyridinium chloride (CPC), green-emitting CDs have been prepared at room temperature, upon treatment of CPC with concentrated NaOH solutions. The investigated method allows the obtaining, in one-pot, of both water-dispersible (W-CDs) and oil-dispersible green-emitting CDs (O-CDs). The study provides original insights into the chemical reactions involved in the process of the carbonization of CPC, proposing a reliable mechanism for the formation of the O-CDs in an aqueous system. The ability to discriminate the contribution of different species, including molecular fluorophores, allows one to properly single out the O-CDs emission. In addition, a mild heating of the reaction mixture, at 70 °C, has demonstrated the ability to dramatically decrease the very long reaction time (i.e. from tens of hours to days) at room temperature, allowing us to synthesize O-CDs in a few tens of minutes while preserving their morphological and optical properties.

10.
Molecules ; 25(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604749

RESUMO

Fabrication of heterostructures by merging two or more materials in a single object. The domains at the nanoscale represent a viable strategy to purposely address materials' properties for applications in several fields such as catalysis, biomedicine, and energy conversion. In this case, solution-phase seeded growth and the hot-injection method are ingeniously combined to fabricate TiO2/PbS heterostructures. The interest in such hybrid nanostructures arises from their absorption properties that make them advantageous candidates as solar cell materials for more efficient solar light harvesting and improved light conversion. Due to the strong lattice mismatch between TiO2 and PbS, the yield of the hybrid structure and the control over its properties are challenging. In this study, a systematic investigation of the heterostructure synthesis as a function of the experimental conditions (such as seeds' surface chemistry, reaction temperature, and precursor concentration), its topology, structural properties, and optical properties are carried out. The morphological and chemical characterizations confirm the formation of small dots of PbS by decorating the oleylamine surface capped TiO2 nanocrystals under temperature control. Remarkably, structural characterization points out that the formation of heterostructures is accompanied by modification of the crystallinity of the TiO2 domain, which is mainly ascribed to lattice distortion. This result is also confirmed by photoluminescence spectroscopy, which shows intense emission in the visible range. This originated from self-trapped excitons, defects, and trap emissive states.


Assuntos
Chumbo/química , Pontos Quânticos/química , Sulfetos/química , Titânio/química , Nanopartículas/ultraestrutura , Energia Solar , Propriedades de Superfície
11.
Int J Pharm ; 583: 119351, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339634

RESUMO

Here, polyethylene glycol (PEG)-stabilized solid lipid nanoparticles (SLNs) containing Pt(IV) prodrugs derived from kiteplatin were designed and proposed as novel nanoformulations potentially useful for the treatment of glioblastoma multiforme. Four different Pt(IV) prodrugs were synthesized, starting from kiteplatin by the addition of two carboxylate ligands with different length of the alkyl chains and lipophilicity degree, and embedded in the core of PEG-stabilized SLNs composed of cetyl palmitate. The SLNs were extensively characterized by complementary optical and morphological techniques. The results proved the formation of SLNs characterized by average size under 100 nm and dependence of drug encapsulation efficiency on the lipophilicity degree of the tested Pt(IV) prodrugs. A monolayer of immortalized human cerebral microvascular endothelial cells (hCMEC/D3) was used as in vitro model of blood-brain barrier (BBB) to evaluate the ability of the SLNs to penetrate the BBB. For this purpose, optical traceable SLNs were achieved by co-incorporation of Pt(IV) prodrugs and luminescent carbon dots (C-Dots) in the SLNs. Finally, an in vitro study was performed by using a human glioblastoma cell line (U87), to investigate on the antitumor efficiency of the SLNs and on their improved ability to be cell internalized respect to the free Pt(IV) prodrugs.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Compostos Organoplatínicos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Pró-Fármacos/administração & dosagem , Antineoplásicos/química , Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células Endoteliais/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Lipídeos/química , Nanopartículas/química , Compostos Organoplatínicos/química , Polietilenoglicóis/química , Pró-Fármacos/química , Pontos Quânticos/administração & dosagem , Pontos Quânticos/química
12.
Int J Mol Sci ; 20(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252567

RESUMO

The low photostability of conventional organic dyes and the toxicity of cadmium-based luminescent quantum dots have prompted the development of novel probes for in vitro and in vivo labelling. Here, a new fluorescent lanthanide probe based on silica nanoparticles is fabricated and investigated for optically traceable in vitro translocator protein (TSPO) targeting. The targeting and detection of TSPO receptor, overexpressed in several pathological states, including neurodegenerative diseases and cancers, may provide valuable information for the early diagnosis and therapy of human disorders. Green fluorescent terbium(III)-calix[4]arene derivative complexes are encapsulated within silica nanoparticles and surface functionalized amine groups are conjugated with selective TSPO ligands based on a 2-phenylimidazo[1,2-a]pyridine acetamide structure containing derivatizable carboxylic groups. The photophysical properties of the terbium complex, promising for biological labelling, are demonstrated to be successfully conveyed to the realized nanoarchitectures. In addition, the high degree of biocompatibility, assessed by cell viability assay and the selectivity towards TSPO mitochondrial membrane receptors, proven by subcellular fractional studies, highlight targeting potential of this nanostructure for in vitro labelling of mitochondria.


Assuntos
Corantes Fluorescentes/química , Nanopartículas/química , Dióxido de Silício/química , Térbio/química , Calixarenos/química , Linhagem Celular Tumoral , Corantes Fluorescentes/farmacologia , Humanos , Ligantes , Fenóis/química , Ligação Proteica , Receptores de GABA/efeitos dos fármacos , Receptores de GABA/metabolismo
13.
Phys Chem Chem Phys ; 20(27): 18176-18183, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29961782

RESUMO

Although the harnessing of multiple and hot excitons is a prerequisite for many of the groundbreaking applications of semiconductor quantum dots (QDs), the characterization of their dynamics through conventional spectroscopic techniques is cumbersome. Here, we show how a careful analysis of 2DES maps acquired in different configurations (BOXCARS and pump-probe geometry) allows the tracking and visualization of intraband Auger relaxation mechanisms, driving the hot carrier cooling, and interband bi- and tri-exciton recombination dynamics. The results obtained on archetypal core-shell CdSe/ZnS QDs suggest that, given the global analysis of the resulting datasets, 2D electronic spectroscopy techniques can successfully and efficiently dispel the intertwined dynamics of fast and ultrafast recombination processes in nanomaterials. Hence, we propose this analysis scheme to be used in future research on novel quantum confined systems.

14.
Colloids Surf B Biointerfaces ; 158: 387-396, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28719860

RESUMO

Titanium and its alloys are widely employed materials for implants in orthopedic or dental surgery due to their mechanical properties, resistance to corrosion and osseointegration capability. However adverse reactions at the tissue/implant interface may occur, which limit the success of the osseointegration process. Therefore, different strategies have to be used to overcome these drawbacks. In this work, we developed two different liposome-based coatings on titanium surfaces as drug or bioactive molecule deposits for dental/orthopedic implant applications. The first one is a supported vesicular layer (SVL), obtained by liposome adhesion on passivated Ti surface, the second one is a covalently bonded vesicular layer (CBVL) grafted on properly functionalized Ti. Photoluminescence spectroscopy and atomic force microscopy investigations demonstrated the effective anchoring of intact liposomes in both systems. Cytotoxicity assays, performed after 48h, showed a MG63 cell viability higher than 75% and 70% on SVLs and CBVLs, respectively. Scanning electron microscopy investigation revealed numerous and spread MG63 cells after 48h on SVL modified Ti surface and a lower cell adhesion on samples coated with CBVL. The cellular uptake capability of liposome content was proved by fluorescence microscopy using carboxyfluorescein loaded SVLs and CBVLs. Finally, we demonstrated that these liposome-modified Ti surfaces were able to deliver a model bioactive molecule (phosphatidylserine) to adherent cells, confirming the potentiality of developed systems in bone related prosthetic applications.


Assuntos
Lipossomos/química , Titânio/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
15.
Sci Technol Adv Mater ; 17(1): 98-108, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877861

RESUMO

Silica based multifunctional heterostructures, exhibiting near infrared (NIR) absorption (650-1200 nm) and luminescence in the visible region, represent innovative nanosystems useful for diagnostic or theranostic applications. Herein, colloidal synthetic procedures are applied to design a photoactive multifunctional nanosystem. Luminescent silica (SiO2) coated quantum dots (QDs) have been used as versatile nanoplatforms to assemble on their surface gold (Au) seeds, further grown into Au spackled structures. The synthesized nanostructures combine the QD emission in the visible region, and, concomitantly, the distinctive NIR absorption of Au nanodomains. The possibility of having multiple QDs in a single heterostructure, the SiO2 shell thickness, and the extent of Au deposition onto SiO2 surface have been carefully controlled. The work shows that a single QD entrapped in 16 nm thick SiO2 shell, coated with Au speckles, represents the most suitable geometry to preserve the QD emission in the visible region and to generate NIR absorption from metal NPs. The resulting architectures present a biomedical potential as an effective optical multimodal probes and as promising therapeutic agents due to the Au NP mediated photothermal effect.

16.
Materials (Basel) ; 7(1): 591-610, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28788477

RESUMO

Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate) or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

17.
J Phys Chem B ; 116(11): 3512-8, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22369210

RESUMO

Room temperature ionic liquids are currently used as functional materials in several application and their optical investigation can provide a better understanding of their physical and chemical behavior. Absorption and emission properties of imidazolium-based ILs have been attributed to the imidazolium moiety and related to the presence of energetically different aggregates. Here, time-integrated and time-resolved investigation has been carried out on 1-alkyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids with different chain lengths in order to probe the occurrence of energy transfer processes, and hence to disclose the presence of various states with different energy. Such a study contributes to provide relevant insight on the effect of alkyl chain and anion type on the emission characteristics, and, hence, on the presence of associated structures.


Assuntos
Ânions/química , Líquidos Iônicos/química , Transferência Ressonante de Energia de Fluorescência , Imidazóis/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA