Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
STAR Protoc ; 2(2): 100566, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34159320

RESUMO

This protocol describes the analysis of protein cysteine redox status. Redox status is crucial in regulating protein activity, stability, and redox signaling cascades. It is determined by conjugation with 1.24 kDa MM(PEG)24 molecule to each reduced cysteine followed by western blot analysis. This protocol is easy to follow, and most of the reagents and instruments required are of common use in any lab. This protocol can be successfully applied to other biological sources. For complete details on the use and execution of this protocol, please refer to Pant et al. (2020).


Assuntos
Cisteína/metabolismo , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Western Blotting , Oxirredução , Proteínas/química , Proteômica/métodos , Transdução de Sinais
2.
Cell Rep ; 33(11): 108512, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326777

RESUMO

Global warming and emerging plant diseases challenge agricultural food/feed production. We identify mechanism(s) regulating both plant thermotolerance and disease resistance. Using virus-induced gene silencing (VIGS)-based genetic screening, we identify a thioredoxin-like 1 (TRXL1) gene involved in plant nonhost disease resistance and thermotolerance. TRXL1 is reduced, partly degraded via proteases and proteasome, and alters its chloroplast localization during heat stress. TRXL1 interacts with more than 400 proteins, including chaperonin CPN60A, caseinolytic protease (CLPC1), and NADP-dependent malate dehydrogenase (NADP-MDH). Chaperonin 60A (CPN60A) guards TRXL1 from degradation, whereas CLPC1 degrades TRXL1 during heat stress. TRXL1 regulates NADP-MDH activity, leading to an increase in malate level and inhibition of superoxide radical formation. We show that CPN60A and NADP-MDH positively regulate nonhost resistance, and CPN60A positively and CLPC1 negatively regulate thermotolerance. This study shows an antagonistic post-translational regulation of TRXL1 by CPN60A and CLPC1 and regulation of MDH by TRXL1, leading to plant disease resistance and thermotolerance.


Assuntos
Cloroplastos/imunologia , Doenças das Plantas/imunologia , Resistência à Doença , Termotolerância
3.
J Exp Bot ; 66(7): 1907-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680792

RESUMO

Lipid remodeling is one of the most dramatic metabolic responses to phosphorus (P) starvation. It consists of the degradation of phospholipids to release the phosphate needed by the cell and the accumulation of glycolipids to replace phospholipids in the membranes. It is shown that PHR1, a well-described transcriptional regulator of P starvation of the MYB family, largely controls this response. Glycerolipid composition and the expression of most lipid-remodeling gene transcripts analysed were altered in the phr1 mutant under phosphate starvation in comparison to wild-type plants. In addition to these results, the lipidomic characterization of wild-type plants showed two novel features of the lipid response to P starvation for Arabidopsis. Triacylglycerol (TAG) accumulates dramatically under P starvation (by as much as ~20-fold in shoots and ~13-fold in roots), a response known to occur in green algae but hardly known in plants. Surprisingly, there was an increase in phosphatidylglycerol (PG) in P-starved roots, a response that may be adaptive as it was suppressed in the phr1 mutant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metabolismo dos Lipídeos , Mutação , Fosfatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Plântula , Transdução de Sinais , Fatores de Transcrição/genética
4.
Plant Cell Environ ; 38(1): 172-87, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24894834

RESUMO

Massive changes in gene expression occur when plants are subjected to phosphorus (P) limitation, but the breadth of metabolic changes in these conditions and their regulation is barely investigated. Nearly 350 primary and secondary metabolites were profiled in shoots and roots of P-replete and P-deprived Arabidopsis thaliana wild type and mutants of the central P-signalling components PHR1 and PHO2, and microRNA399 overexpresser. In the wild type, the levels of 87 primary metabolites, including phosphorylated metabolites but not 3-phosphoglycerate, decreased, whereas the concentrations of most organic acids, amino acids, nitrogenous compounds, polyhydroxy acids and sugars increased. Furthermore, the levels of 35 secondary metabolites, including glucosinolates, benzoides, phenylpropanoids and flavonoids, were altered during P limitation. Observed changes indicated P-saving strategies, increased photorespiration and crosstalk between P limitation and sulphur and nitrogen metabolism. The phr1 mutation had a remarkably pronounced effect on the metabolic P-limitation response, providing evidence that PHR1 is a key factor for metabolic reprogramming during P limitation. The effects of pho2 or microRNA399 overexpression were comparatively minor. In addition, positive correlations between metabolites and gene transcripts encoding pathway enzymes were revealed. This study provides an unprecedented metabolic phenotype during P limitation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Ácidos Glicéricos/metabolismo , Redes e Vias Metabólicas , Metaboloma , MicroRNAs/genética , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , RNA de Plantas/genética , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
5.
Plant Cell ; 26(4): 1792-1807, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24769482

RESUMO

Plants are sessile organisms that gauge stressful conditions to ensure survival and reproductive success. While plants in nature often encounter chronic or recurring stressful conditions, the strategies to cope with those are poorly understood. Here, we demonstrate the involvement of ARGONAUTE1 and the microRNA pathway in the adaptation to recurring heat stress (HS memory) at the physiological and molecular level. We show that miR156 isoforms are highly induced after HS and are functionally important for HS memory. miR156 promotes sustained expression of HS-responsive genes and is critical only after HS, demonstrating that the effects of modulating miR156 on HS memory do not reflect preexisting developmental alterations. miR156 targets SPL transcription factor genes that are master regulators of developmental transitions. SPL genes are posttranscriptionally downregulated by miR156 after HS, and this is critical for HS memory. Altogether, the miR156-SPL module mediates the response to recurring HS in Arabidopsis thaliana and thus may serve to integrate stress responses with development.

6.
J Exp Bot ; 64(14): 4301-12, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23997203

RESUMO

In plants, sugars such as glucose act as signalling molecules that promote changes in gene expression programmes that impact on growth and development. Recent evidence has revealed the potential importance of controlling mRNA decay in some aspects of glucose-mediated regulatory responses suggesting a role of microRNAs (miRNAs) in these responses. In order to get a better understanding of glucose-mediated development modulation involving miRNA-related regulatory pathways, early seedling development of mutants impaired in miRNA biogenesis (hyl1-2 and dcl1-11) and miRNA activity (ago1-25) was evaluated. All mutants exhibited a glucose hyposensitive phenotype from germination up to seedling establishment, indicating that miRNA regulatory pathways are involved in the glucose-mediated delay of early seedling development. The expression profile of 200 miRNA primary transcripts (pri-miRs) was evaluated by large-scale quantitative real-time PCR profiling, which revealed that 38 pri-miRs were regulated by glucose. For several of them, the corresponding mature miRNAs are known to participate directly or indirectly in plant development, and their accumulation was shown to be co-regulated with the pri-miR by glucose. Furthermore, the expression of several miRNA target genes was found to be deregulated in response to glucose in the miRNA machinery mutants ago1-25, dcl1-11, and hyl1-2. Also, in these mutants, glucose promoted misexpression of genes for the three abscisic acid signalling elements ABI3, ABI4, and ABI5. Thus, miRNA regulatory pathways play a role in the adjustments of growth and development triggered by glucose signalling.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Redes Reguladoras de Genes/genética , Glucose/farmacologia , MicroRNAs/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , MicroRNAs/genética , Mutação/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos
7.
New Phytol ; 190(2): 442-56, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20840511

RESUMO

• Reduced oxygen availability is not only associated with flooding, but occurs also during growth and development. It is largely unknown how hypoxia is perceived and what signaling cascade is involved in activating adaptive responses. • We analysed the expression of over 1900 transcription factors (TFs) and 180 microRNA primary transcripts (pri-miRNAs) in Arabidopsis roots exposed to different hypoxic conditions by means of quantitative PCR. We also analysed the promoters of genes induced by hypoxia with respect to over-represented DNA elements that can act as potential TF binding sites and their in vivo interaction was verified. • We identified various subsets of TFs that responded differentially through time and in an oxygen concentration-dependent manner. The regulatory potential of selected TFs and their predicted DNA binding elements was validated. Although the expression of pri-miRNAs was differentially regulated under hypoxia, only one corresponding mature miRNA changed accordingly. Putative target transcripts of the miRNAs were not significantly affected. • Our results show that the regulation of hypoxia-induced genes is controlled via simultaneous interaction of various combinations of TFs. Under anoxic conditions, an additional set of TFs is induced. Regulation of gene expression via miRNAs appears to play a minor role during hypoxia.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , MicroRNAs/metabolismo , Oxigênio/farmacologia , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , DNA de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Regulação para Cima/efeitos dos fármacos
8.
Mol Plant Microbe Interact ; 23(7): 915-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20521954

RESUMO

Many plants improve their phosphate (Pi) availability by forming mutualistic associations with arbuscular mycorrhizal (AM) fungi. Pi-repleted plants are much less colonized by AM fungi than Pi-depleted plants. This indicates a link between plant Pi signaling and AM development. MicroRNAs (miR) of the 399 family are systemic Pi-starvation signals important for maintenance of Pi homeostasis in Arabidopsis thaliana and might also qualify as signals regulating AM development in response to Pi availability. MiR399 could either represent the systemic low-Pi signal promoting or required for AM formation or they could act as counter players of systemic Pi-availability signals that suppress AM symbiosis. To test either of these assumptions, we analyzed the miR399 family in the AM-capable plant model Medicago truncatula and could experimentally confirm 10 novel MIR399 genes in this species. Pi-depleted plants showed increased expression of mature miR399 and multiple pri-miR399, and unexpectedly, levels of five of the 15 pri-miR399 species were higher in leaves of mycorrhizal plants than in leaves of nonmycorrhizal plants. Compared with nonmycorrhizal Pi-depleted roots, mycorrhizal roots of Pi-depleted M. truncatula and tobacco plants had increased Pi contents due to symbiotic Pi uptake but displayed higher mature miR399 levels. Expression levels of MtPho2 remained low and PHO2-dependent Pi-stress marker transcript levels remained high in these mycorrhizal roots. Hence, an AM symbiosis-related signal appears to increase miR399 expression and decrease PHO2 activity. MiR399 overexpression in tobacco suggested that miR399 alone is not sufficient to improve mycorrhizal colonization supporting the assumption that, in mycorrhizal roots, increased miR399 are necessary to keep the MtPho2 expression and activity low, which would otherwise increase in response to symbiotic Pi uptake.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Bases , Biomarcadores , Fertilizantes , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico , Simbiose/fisiologia , Nicotiana/metabolismo , Nicotiana/microbiologia
9.
Plant Physiol ; 150(3): 1541-55, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465578

RESUMO

Comprehensive expression profiles of Arabidopsis (Arabidopsis thaliana) MIRNA genes and mature microRNAs (miRs) are currently not available. We established a quantitative real-time polymerase chain reaction platform that allows rapid and sensitive quantification of 177 Arabidopsis primary miR transcripts (pri-miRs). The platform was used to detect phosphorus (P) or nitrogen (N) status-responsive pri-miR species. Several pri-miR169 species as well as pri-miR398a were found to be repressed during N limitation, whereas during P limitation, pri-miR778, pri-miR827, and pri-miR399 species were induced and pri-miR398a was repressed. The corresponding responses of the biologically active, mature miRs were confirmed using specific stem-loop reverse transcription primer quantitative polymerase chain reaction assays and small RNA sequencing. Interestingly, the latter approach also revealed high abundance of some miR star strands. Bioinformatic analysis of small RNA sequences with a modified miRDeep algorithm led to the identification of the novel P limitation-induced miR2111, which is encoded by two loci in the Arabidopsis genome. Furthermore, miR2111, miR169, a miR827-like sequence, and the abundances of several miR star strands were found to be strongly dependent on P or N status in rapeseed (Brassica napus) phloem sap, flagging them as candidate systemic signals. Taken together, these results reveal the existence of complex small RNA-based regulatory networks mediating plant adaptation to mineral nutrient availability.


Assuntos
Arabidopsis/genética , Brassica napus/genética , MicroRNAs/fisiologia , RNA de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Brassica napus/metabolismo , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Dados de Sequência Molecular , Nitrogênio/farmacologia , Floema/genética , Floema/metabolismo , Fósforo/farmacologia , Reação em Cadeia da Polimerase , RNA de Plantas/química , Análise de Sequência de RNA
10.
Nucleic Acids Res ; 37(9): 3083-93, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19304749

RESUMO

Arabidopsis thaliana HYL1 is a nuclear double-stranded RNA-binding protein involved in the maturation of pri-miRNAs. A quantitative real-time PCR platform for parallel quantification of 176 pri-miRNAs was used to reveal strong accumulation of 57 miRNA precursors in the hyl1 mutant that completely lacks HYL1 protein. This approach enabled us for the first time to pinpoint particular members of MIRNA family genes that require HYL1 activity for efficient maturation of their precursors. Moreover, the accumulation of miRNA precursors in the hyl1 mutant gave us the opportunity to carry out 3' and 5' RACE experiments which revealed that some of these precursors are of unexpected length. The alignment of HYL1-dependent miRNA precursors to A. thaliana genomic sequences indicated the presence of introns in 12 out of 20 genes studied. Some of the characterized intron-containing pri-miRNAs undergo alternative splicing such as exon skipping or usage of alternative 5' splice sites suggesting that this process plays a role in the regulation of miRNA biogenesis. In the hyl1 mutant intron-containing pri-miRNAs accumulate alongside spliced pri-miRNAs suggesting the recruitment of HYL1 into the miRNA precursor maturation pathway before their splicing occurs.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Genes de Plantas , Íntrons , MicroRNAs/química , MicroRNAs/metabolismo , Mutação , Precursores de RNA/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética
11.
Plant J ; 53(5): 731-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17988220

RESUMO

The presence of microRNA species in plant phloem sap suggests potential signaling roles by long-distance regulation of gene expression. Proof for such a role for a phloem-mobile microRNA is lacking. Here we show that phosphate (Pi) starvation-induced microRNA399 (miR399) is present in the phloem sap of two diverse plant species, rapeseed and pumpkin, and levels are strongly and specifically increased in phloem sap during Pi deprivation. By performing micro-grafting experiments using Arabidopsis, we further show that chimeric plants constitutively over-expressing miR399 in the shoot accumulate mature miR399 species to very high levels in their wild-type roots, while corresponding primary transcripts are virtually absent in roots, demonstrating shoot-to-root transport. The chimeric plants exhibit (i) down-regulation of the miR399 target transcript (PHO2), which encodes a critical component for maintenance of Pi homeostasis, in the wild-type root, and (ii) Pi accumulation in the shoot, which is the phenotype of pho2 mutants, miR399 over-expressers or chimeric plants with a genetic knock-out of PHO2 in the root. Hence the transported miR399 molecules retain biological activity. This is a demonstration of systemic control of a biological process, i.e. maintenance of plant Pi homeostasis, by a phloem-mobile microRNA.


Assuntos
Brassica napus/metabolismo , Cucurbita/metabolismo , Homeostase , MicroRNAs/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico Ativo , Brassica napus/genética , Cucurbita/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , RNA de Plantas/metabolismo , Transdução de Sinais
12.
Plant Cell Environ ; 30(1): 85-112, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17177879

RESUMO

Affymetrix ATH1 arrays, large-scale real-time reverse transcription PCR of approximately 2200 transcription factor genes and other gene families, and analyses of metabolites and enzyme activities were used to investigate the response of Arabidopsis to phosphate (Pi) deprivation and re-supply. Transcript data were analysed with MapMan software to identify coordinated, system-wide changes in metabolism and other cellular processes. Phosphorus (P) deprivation led to induction or repression of > 1000 genes involved in many processes. A subset, including the induction of genes involved in P uptake, the mobilization of organic Pi, the conversion of phosphorylated glycolytic intermediates to carbohydrates and organic acids, the replacement of P-containing phospholipids with galactolipids and the repression of genes involved in nucleotide/nucleic acid synthesis, was reversed within 3 h after Pi re-supply. Analyses of 22 enzyme activities revealed that changes in transcript levels often, but not always, led to changes in the activities of the encoded enzymes in P-deprived plants. Analyses of metabolites confirmed that P deprivation leads to a shift towards the accumulation of carbohydrates, organic acids and amino acids, and that Pi re-supply leads to use of the latter. P-deprived plants also showed large changes in the expression of many genes involved in, for example, secondary metabolism and photosynthesis. These changes were not reversed rapidly upon Pi re-supply and were probably secondary in origin. Differentially expressed and highly P-specific putative regulator genes were identified that presumably play central roles in coordinating the complex responses of plants to changes in P nutrition. The specific responses to Pi differ markedly from those found for nitrate, whereas the long-term responses during P and N deprivation share common and non-specific features.


Assuntos
Arabidopsis/genética , Genoma de Planta , Fósforo/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA