Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Signal ; 16(795): eadd9539, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490546

RESUMO

Precise synapse formation is essential for normal functioning of the nervous system. Retinal photoreceptors establish selective contacts with bipolar cells, aligning the neurotransmitter release apparatus with postsynaptic signaling cascades. This involves transsynaptic assembly between the dystroglycan-dystrophin complex on the photoreceptor and the orphan receptor GPR179 on the bipolar cell, which is mediated by the extracellular matrix protein pikachurin (also known as EGFLAM). This complex plays a critical role in the synaptic organization of photoreceptors and signal transmission, and mutations affecting its components cause blinding disorders in humans. Here, we investigated the structural organization and molecular mechanisms by which pikachurin orchestrates transsynaptic assembly and solved structures of the human pikachurin domains by x-ray crystallography and of the GPR179-pikachurin complex by single-particle, cryo-electron microscopy. The structures reveal molecular recognition principles of pikachurin by the Cache domains of GPR179 and show how the interaction is involved in the transsynaptic alignment of the signaling machinery. Together, these data provide a structural basis for understanding the synaptic organization of photoreceptors and ocular pathology.


Assuntos
Proteínas da Matriz Extracelular , Sinapses , Humanos , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Proteínas da Matriz Extracelular/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo
2.
Sci Total Environ ; 839: 156265, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643132

RESUMO

Biochar is recognized as an efficient amendment and soil improver. However, environmental and quality assessments are needed to ensure the sustainability of its use in agriculture. This work considers the biochar's chemical-physical characterization and its potential phyto- and geno-toxicity, assessed with germination and Ames tests, obtaining valuable information for a safe field application. Three biochar types, obtained from gasification at different temperatures of green biomasses from the Tuscan-Emilian Apennines (in Italy), were compared through a broad chemical, physical and biological evaluation. The results obtained showed the relevance of temperature in determining the chemical and morphological properties of biochar, which was shown with several analytical techniques such as the elemental composition, water holding capacity, ash content, but also with FTIR and X-ray spectroscopies. These techniques showed the presence of different relevant surface aliphatic and aromatic groups. The procedures for evaluating the potential toxicity using seeds germination and Ames genotoxicity assay highlights that biochar does not cause detrimental effects when it enters in contact with soil, micro- and macro-organisms, and plants. The genotoxicity test provided a new highlight in evaluating biochar environmental safety.


Assuntos
Carvão Vegetal , Madeira , Biomassa , Carvão Vegetal/química , Solo/química , Madeira/química
3.
Neurobiol Dis ; 139: 104815, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32087285

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which there are no validated biomarkers. Previous exploratory studies have identified a panel of candidate protein biomarkers in peripheral blood mononuclear cells (PBMCs) that include peptidyl-prolyl cis-trans isomerase A (PPIA), heat shock cognate protein 71 kDa (HSC70), heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) and TDP-43. It has also been found that PPIA plays a key role in the assembly and dynamics of ribonucleoprotein (RNP) complexes and interacts with TDP-43. Its absence accelerates disease progression in a SOD1 mouse model of ALS, and low levels of PPIA in PBMCs are associated with early-onset ALS. However, the diagnostic and prognostic values of PPIA and the other candidate protein biomarkers have not been established. We analyzed the PBMC proteins in a well-characterized cohort of ALS patients (n=93), healthy individuals (n=104) and disease controls (n=111). We used a highly controlled sample processing procedure that implies two-step differential detergent fractionation. We found that the levels of the selected PBMC proteins in the soluble and insoluble fraction, combined, have a high discriminatory power for distinguishing ALS from controls, with PPIA, hnRNPA2B1 and TDP-43 being the proteins most closely associated with ALS. We also found a shift toward increased protein partitioning in the insoluble fraction in ALS and this correlated with a worse disease phenotype. In particular, low PPIA soluble levels were associated with six months earlier death. In conclusion, PPIA is a disease modifier with prognostic potential. PBMC proteins indicative of alterations in protein and RNA homeostasis are promising biomarkers of ALS, for diagnosis, prognosis and patient stratification.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Leucócitos Mononucleares/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Peptidilprolil Isomerase/metabolismo , Prognóstico
4.
Muscle Nerve ; 59(3): 303-308, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30458059

RESUMO

INTRODUCTION: RNS60 is a novel immune-modulatory agent that has shown neuroprotective effects in amytrophic lateral sclerosis (ALS) preclinical models. RNS60 is administered by weekly intravenous infusion and daily nebulization. The objective of this pilot open-label trial was to test the feasibility, safety, and tolerability of long-term RNS60 administration in ALS patients. METHODS: The planned treatment duration was 23 weeks and the primary outcomes were safety and tolerability. Secondary outcomes included PBR28 positron emission tomography (PET) imaging and plasma biomarkers of inflammation. RESULTS: Sixteen participants with ALS received RNS60 and 13 (81%) completed 23 weeks of RNS60 treatment. There were no serious adverse events and no participants withdrew from the trial due to drug-related adverse events. There were no significant changes in the biomarkers. DISCUSSION: Long-term RNS60 administration was safe and well-tolerated. A large, multicenter, phase II trial of RNS60 is currently enrolling participants to test the effects of RNS60 on ALS biomarkers and disease progression. Muscle Nerve 59:303-308, 2019.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Administração por Inalação , Adulto , Idoso , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/fisiopatologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Biomarcadores/análise , Encéfalo/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Força Muscular , Neuroimagem , Projetos Piloto , Tomografia por Emissão de Pósitrons , Cloreto de Sódio/efeitos adversos , Cloreto de Sódio/uso terapêutico , Resultado do Tratamento , Adulto Jovem
5.
Bioorg Med Chem Lett ; 28(17): 2816-2826, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30122223

RESUMO

Cancer still represents a "nightmare" worldwide, causing annually millions of victims. Several antiproliferative molecules are currently used as drugs market and offer a pharmaceutical opportunity for attenuating and treating tumor manifestations. In this context, natural sources have a relevant role, since they provide the 60% of currently-used anticancer agents. Among the numerous natural products, acting via different mechanisms of action, microtubule-targeting agents (MTAs) have a high therapeutic potential, since they disrupt the abnormal cancer cell growth, interfering with the continuous mitotic division. Vinca alkaloids (VAs) are the earliest developed MTAs and approved for clinical use (Vincristine, Vinblastine, Vinorelbine, Vindesine, and Vinflunine) as agents in the treatment of hematological and lymphatic neoplasms. Here, we review the state-of-art of VAs, discussing their mechanism of action and pharmacokinetic properties and highlighting their therapeutic relevance and toxicological profile. Additionally, we briefly disclosed the technological approaches faced so far to ameliorate the pharmacological properties, as well as to avoid the drug resistance. Lastly, we introduced the recent advances in the discovery of new derivatives.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Alcaloides de Vinca/uso terapêutico , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Alcaloides de Vinca/química
6.
Front Mol Biosci ; 3: 43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597947

RESUMO

Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA