Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 67(8)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35334474

RESUMO

Objective. To investigate the potential of 2D ion chamber arrays to serve as a standalone tool for the verification of source strength, positioning and dwell time, within the framework of192Ir high-dose rate brachytherapy device quality assurance (QA).Approach.A commercially available ion chamber array was used. Fitting of a 2D Lorentzian peak function to experimental data from a multiple source dwell position irradiation on a frame-by-frame basis, facilitated tracking of the source center orthogonal projection on the array plane. For source air kerma strength verification, Monte Carlo simulation was employed to obtain a chamber array- and source-specific correction factor of calibration with a 6 MV photon beam. This factor converted the signal measured by each ion chamber element to air kerma in free space. A source positioning correction was also applied to lift potential geometry mismatch between experiment and Monte Carlo simulation.Main results.Spatial and temporal accuracy of source movement was verified within 0.5 mm and 0.02 s, respectively, in compliance with the test endpoints recommended by international professional societies. The source air kerma strength was verified experimentally within method uncertainties estimated as 1.44% (k = 1). The source positioning correction method employed did not introduce bias to experimental results of irradiations where source positioning was accurate. Development of a custom jig attachable to the chamber array for accurate and reproducible experimental set up would improve testing accuracy and obviate the need for source positioning correction in air kerma strength verification.Significance.Delivery of a single irradiation plan, optimized based on results of this work, to a 2D ion chamber array can be used for concurrent testing of source position, dwell time and air kerma strength, and the procedure can be expedited through automation. Chamber arrays merit further study in treatment planning QA and real time,in vivodose verification.


Assuntos
Braquiterapia , Braquiterapia/métodos , Calibragem , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Radiometria/métodos , Dosagem Radioterapêutica , Incerteza
2.
Z Med Phys ; 12(4): 252-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12575439

RESUMO

In the present study, different dosimetric methods were investigated for their ability to predict the energy dose in the vicinity of the microSelectron HDR 192Ir brachytherapy source. The results of a time-efficient Sievert integral model of proven accuracy in the cm distance range from all 192Ir sources were benchmarked against accurate Monte Carlo derived dosimetric data in the close vicinity of the source. This comparison revealed that the Sievert model is capable of accurate dosimetry even in the mm distance range from the source. The dose rate distributions were compared with results obtained from different versions (v. 13.7 and 14.2.2) of the Plato BPS commercial treatment planning system, for an application following the Paris trial intravascular irradiation protocol. The results of brachytherapy planning system calculations were found reliable at radial distances of clinical relevance. Noticeable errors existed only in the extreme case of dose calculations at 2 mm from the source axis using Plato v. 13.7. Experimental dosimetric data for the intravascular application, as obtained through the VIPAR polymer gel-MRI method, were also evaluated for dose verification purposes. This method allowed with reasonable accuracy the verification of absolute dose distributions for peripheral vessel applications using 192Ir sources.


Assuntos
Braquiterapia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Géis , Humanos , Processamento de Imagem Assistida por Computador , Radioisótopos de Irídio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA