Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745763

RESUMO

Motivation: MerCat2 ("Mer-Catenate2") is a versatile, parallel, scalable and modular property software package for robustly analyzing features in omics data. Using massively parallel sequencing raw reads, assembled contigs, and protein sequences from any platform as input, MerCat2 performs k-mer counting of any length k, resulting in feature abundance counts tables, quality control reports, protein feature metrics, and graphical representation (i.e. principal component analysis (PCA)). Results: MerCat2 allows for direct analysis of data properties in a database-independent manner that initializes all data, which other profilers and assembly-based methods cannot perform. MerCat2 represents an integrated tool to illuminate omics data within a sample for rapid cross-examination and comparisons. Availability and implementation: MerCat2 is written in Python and distributed under a BSD-3 license. The source code of MerCat2 is freely available at https://github.com/raw-lab/mercat2. MerCat2 is compatible with Python 3 on Mac OS X and Linux. MerCat2 can also be easily installed using bioconda: mamba create -n mercat2 -c conda-forge -c bioconda mercat2.

2.
J Chem Theory Comput ; 20(3): 1214-1227, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291561

RESUMO

Polariton chemistry has attracted great attention as a potential route to modify chemical structure, properties, and reactivity through strong interactions among molecular electronic, vibrational, or rovibrational degrees of freedom. A rigorous theoretical treatment of molecular polaritons requires the treatment of matter and photon degrees of freedom on equal quantum mechanical footing. In the limit of molecular electronic strong or ultrastrong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach we refer to as ab initio cavity quantum electrodynamics, where the photon degrees of freedom are treated at the level of cavity quantum electrodynamics. Here, we present an approach called Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction theory to provide ground- and excited-state polaritonic surfaces with a balanced description of strong correlation effects among electronic and photonic degrees of freedom. This method provides a platform for ab initio cavity quantum electrodynamics when both strong electron correlation and strong light-matter coupling are important and is an important step toward computational approaches that yield multiple polaritonic potential energy surfaces and couplings that can be leveraged for ab initio molecular dynamics simulations of polariton chemistry.

3.
J Chem Theory Comput ; 19(20): 7077-7096, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37458314

RESUMO

This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.

4.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428065

RESUMO

Tensor algebra operations such as contractions in computational chemistry consume a significant fraction of the computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. TAMM decouples the specification of the computation from the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM, whereas high-performance computing developers can direct their attention to various optimizations on the underlying constructs, such as efficient data distribution, optimized scheduling algorithms, and efficient use of intra-node resources (e.g., graphics processing units). The modular structure of TAMM allows it to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to the sustainable development of scalable ground- and excited-state electronic structure methods. We present case studies highlighting the ease of use, including the performance and productivity gains compared to other frameworks.

5.
J Chem Phys ; 158(18)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37171197

RESUMO

For many computational chemistry packages, being able to efficiently and effectively scale across an exascale cluster is a heroic feat. Collective experience from the Department of Energy's Exascale Computing Project suggests that achieving exascale performance requires far more planning, design, and optimization than scaling to petascale. In many cases, entire rewrites of software are necessary to address fundamental algorithmic bottlenecks. This in turn requires a tremendous amount of resources and development time, resources that cannot reasonably be afforded by every computational science project. It thus becomes imperative that computational science transition to a more sustainable paradigm. Key to such a paradigm is modular software. While the importance of modular software is widely recognized, what is perhaps not so widely appreciated is the effort still required to leverage modular software in a sustainable manner. The present manuscript introduces PluginPlay, https://github.com/NWChemEx-Project/PluginPlay, an inversion-of-control framework designed to facilitate developing, maintaining, and sustaining modular scientific software packages. This manuscript focuses on the design aspects of PluginPlay and how they specifically influence the performance of the resulting package. Although, PluginPlay serves as the framework for the NWChemEx package, PluginPlay is not tied to NWChemEx or even computational chemistry. We thus anticipate PluginPlay to prove to be a generally useful tool for a number of computational science packages looking to transition to the exascale.

6.
J Chem Theory Comput ; 19(8): 2248-2257, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096369

RESUMO

We report the implementation of the real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green's function method [ J. Chem. Phys. 2020, 152, 174113] within the Tensor Algebra for Many-body Methods (TAMM) infrastructure. TAMM is a massively parallel heterogeneous tensor library designed for utilizing forthcoming exascale computing resources. The two-body electron repulsion matrix elements are Cholesky-decomposed, and we imposed spin-explicit forms of the various operators when evaluating the tensor contractions. Unlike our previous real algebra Tensor Contraction Engine (TCE) implementation, the TAMM implementation supports fully complex algebra. The RT-EOM-CC singles (S) and doubles (D) time-dependent amplitudes are propagated using a first-order Adams-Moulton method. This new implementation shows excellent scalability tested up to 500 GPUs using the Zn-porphyrin molecule with 655 basis functions, with parallel efficiencies above 90% up to 400 GPUs. The TAMM RT-EOM-CCSD was used to study core photoemission spectra in the formaldehyde and ethyl trifluoroacetate (ESCA) molecules. Simulations of the latter involve as many as 71 occupied and 649 virtual orbitals. The relative quasiparticle ionization energies and overall spectral functions agree well with available experimental results.

7.
J Chem Phys ; 158(8): 084803, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859110

RESUMO

Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.

8.
J Chem Phys ; 157(4): 044101, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922363

RESUMO

Newly developed coupled-cluster (CC) methods enable simulations of ionization potentials and spectral functions of molecular systems in a wide range of energy scales ranging from core-binding to valence. This paper discusses the results obtained with the real-time equation-of-motion CC cumulant (RT-EOM-CC) approach and CC Green's function (CCGF) approaches in applications to the water and water dimer molecules. We compare the ionization potentials obtained with these methods for the valence region with the results obtained with the coupled-cluster with singles, doubles, and perturbative triples formulation as a difference of energies for N and N - 1 electron systems. All methods show good agreement with each other. They also agree well with the experiment with errors usually below 0.1 eV for the ionization potentials. We also analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods employing single and double excitations, as a function of the monomer OH bond length and the proton transfer coordinate in the dimer. Finally, we analyze the impact of the basis set effects on the quality of calculated ionization potentials and find that the basis set effects are less pronounced for the augmented-type sets.

9.
Chem Rev ; 121(8): 4962-4998, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33788546

RESUMO

Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems. As the hardware and software have evolved, so have the theoretical and computational chemistry methods and algorithms. Parallel computers clearly changed the common computing paradigm in the late 1970s and 80s, and the field has again seen a paradigm shift with the advent of graphical processing units. This review explores the challenges and some of the solutions in transforming software from the terascale to the petascale and now to the upcoming exascale computers. While discussing the field in general, NWChem and its redesign, NWChemEx, will be highlighted as one of the early codesign projects to take advantage of massively parallel computers and emerging software standards to enable large scientific challenges to be tackled.

10.
J Chem Phys ; 152(1): 011101, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914770

RESUMO

Accurate description of the ionization process in DNA is crucial to the understanding of the DNA damage under exposure to ionizing radiation and the exploration of the potential application of DNA strands in nanoelectronics. In this work, by employing our recently developed Green's function coupled-cluster library on supercomputing facilities, we have studied the spectral functions of several guanine-cytosine (G-C) base pair structures ([G-C]n, n = 1-3) for the first time in a relatively broad near-valence regime ([-25.0, -5.0] eV) in the coupled-cluster with singles and doubles level. Our focus is to give a preliminary many-body coupled-cluster understanding and guideline of the vertical ionization energy (VIE), spectral profile, and ionization feature changes of these systems as the system size expands in this near-valence regime. The results show that, as the system size expands, even though the lowest VIEs keep decreasing, the changes of spectral function profile and the relative peak positions get unexpectedly smaller. Further analysis of the ionized states associated with the most intensive peak in the spectral functions reveals non-negligible |2h, 1p⟩'s in the ionized wave functions of the considered G-C base pair systems. The leading |2h, 1p⟩'s associated with the main ionizations from the cytosine part of the G-C base pairs feature a transition from the intra-base-pair cytosine π → π* excitation to the inter-base-pair electron excitation as the size of G-C base pairs expands, which also indicates the minimum quantum region in the many-body calculations of DNA systems.


Assuntos
DNA/química , Teoria Quântica , Pareamento de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA