Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biomolecules ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785992

RESUMO

Epithelial ovarian cancer (EOC) is one of the most aggressive forms of gynaecological malignancies. Survival rates for women diagnosed with OC remain poor as most patients are diagnosed with advanced disease. Debulking surgery and platinum-based therapies are the current mainstay for OC treatment. However, and despite achieving initial remission, a significant portion of patients will relapse because of innate and acquired resistance, at which point the disease is considered incurable. In view of this, novel detection strategies and therapeutic approaches are needed to improve outcomes and survival of OC patients. In this review, we summarize our current knowledge of the genetic landscape and molecular pathways underpinning OC and its many subtypes. By examining therapeutic strategies explored in preclinical and clinical settings, we highlight the importance of decoding how single and convergent genetic alterations co-exist and drive OC progression and resistance to current treatments. We also propose that core signalling pathways such as the PI3K and MAPK pathways play critical roles in the origin of diverse OC subtypes and can become new targets in combination with known DNA damage repair pathways for the development of tailored and more effective anti-cancer treatments.


Assuntos
Terapia de Alvo Molecular , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/terapia , Carcinoma Epitelial do Ovário/metabolismo , Antineoplásicos/uso terapêutico , Animais
2.
NPJ Precis Oncol ; 8(1): 20, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273040

RESUMO

Utility of PI3Kα inhibitors like BYL719 is limited by the acquisition of genetic and non-genetic mechanisms of resistance which cause disease recurrence. Several combination therapies based on PI3K inhibition have been proposed, but a way to systematically prioritize them for breast cancer treatment is still missing. By integrating published and in-house studies, we have developed in silico models that quantitatively capture dynamics of PI3K signaling at the network-level under a BYL719-sensitive versus BYL719 resistant-cell state. Computational predictions show that signal rewiring to alternative components of the PI3K pathway promote resistance to BYL719 and identify PDK1 as the most effective co-target with PI3Kα rescuing sensitivity of resistant cells to BYL719. To explore whether PI3K pathway-independent mechanisms further contribute to BYL719 resistance, we performed phosphoproteomics and found that selection of high levels of the cell cycle regulator p21 unexpectedly promoted drug resistance in T47D cells. Functionally, high p21 levels favored repair of BYL719-induced DNA damage and bypass of the associated cellular senescence. Importantly, targeted inhibition of the check-point inhibitor CHK1 with MK-8776 effectively caused death of p21-high T47D cells, thus establishing a new vulnerability of BYL719-resistant breast cancer cells. Together, our integrated studies uncover hidden molecular mediators causing resistance to PI3Kα inhibition and provide a framework to prioritize combination therapies for PI3K-mutant breast cancer.

3.
J Pathol Inform ; 14: 100329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664452

RESUMO

Metaplastic breast cancer (MpBC) is a rare and aggressive subtype of breast cancer, with data emerging on prognostic factors and survival prediction. This study aimed to develop machine learning models to predict breast cancer-specific survival (BCSS) in MpBC patients, utilizing a dataset of 160 patients with clinical, pathological, and biological variables. An in-depth variable selection process was carried out using gain ratio and correlation-based methods, resulting in 10 variables for model estimation. Five models (decision tree with bagging; logistic regression; multilayer perceptron; naïve Bayes; and, random forest algorithms) were evaluated using 10-fold cross-validation. Despite the constraints posed by the absence of therapeutic information, the random forest model exhibited the highest performance in predicting BCSS, with an ROC area of 0.808. This study emphasizes the potential of machine learning algorithms in predicting prognosis for complex and heterogeneous cancer subtypes using clinical datasets, and their potential to contribute to patient management. Further research that incorporates additional variables, such as treatment response, and more advanced machine learning techniques will likely enhance the predictive power of MpBC prognostic models.

4.
Sci Adv ; 9(17): eadf9063, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126544

RESUMO

Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.


Assuntos
Técnicas Biossensoriais , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Biossensoriais/métodos
5.
Curr Top Microbiol Immunol ; 436: 95-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243841

RESUMO

The tumor suppressor PTEN (Phosphatase and Tensin homolog deleted on Chromosome 10) executes critical biological functions that limit cellular growth and proliferation. PTEN inhibits activation of the proto-oncogenic PI3K pathway and is required during embryogenesis and to suppress tumor formation and cancer progression throughout life. The critical role that PTEN plays in restraining cellular growth has been validated through the generation of a number of animal models whereby PTEN inactivation invariably leads to tumor formation in a cell-autonomous fashion. However, the increasing understanding of the mechanisms through which the immune system contributes to suppressing tumor progression has highlighted how, in a cell non-autonomous fashion, cancer-associated mutations can indirectly enhance oncogenesis by evading immune cell recognition. Here, in light of the essential role of PTEN in the regulation of immune cell development and function, and based on recent findings showing that PTEN loss can promote resistance to immune checkpoint inhibitors in various tumor types, we re-evaluate our understanding of the mechanisms through which PTEN functions as a tumor suppressor and postulate that this task is achieved through a combination of cell autonomous and non-autonomous effects. We highlight some of the critical studies that have delineated the functional role of PTEN in immune cell development and blood malignancies and propose new strategies for the treatment of PTEN loss-driven diseases.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Animais , Carcinogênese/genética , Inibidores de Checkpoint Imunológico , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Tensinas
6.
Nat Commun ; 13(1): 2500, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523793

RESUMO

Maintenance of male fertility requires spermatogonial stem cells (SSCs) that self-renew and generate differentiating germ cells for production of spermatozoa. Germline cells are sensitive to genotoxic drugs and patients receiving chemotherapy can become infertile. SSCs surviving treatment mediate germline recovery but pathways driving SSC regenerative responses remain poorly understood. Using models of chemotherapy-induced germline damage and recovery, here we identify unique molecular features of regenerative SSCs and characterise changes in composition of the undifferentiated spermatogonial pool during germline recovery by single-cell analysis. Increased mitotic activity of SSCs mediating regeneration is accompanied by alterations in growth factor signalling including PI3K/AKT and mTORC1 pathways. While sustained mTORC1 signalling is detrimental for SSC maintenance, transient mTORC1 activation is critical for the regenerative response. Concerted inhibition of growth factor signalling disrupts core features of the regenerative state and limits germline recovery. We also demonstrate that the FOXM1 transcription factor is a target of growth factor signalling in undifferentiated spermatogonia and provide evidence for a role in regeneration. Our data confirm dynamic changes in SSC functional properties following damage and support an essential role for microenvironmental growth factors in promoting a regenerative state.


Assuntos
Fosfatidilinositol 3-Quinases , Espermatogênese , Diferenciação Celular/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espermatogênese/genética , Espermatogônias , Células-Tronco/metabolismo , Testículo/metabolismo
7.
STAR Protoc ; 2(3): 100765, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34485937

RESUMO

3D cultures of mammary epithelial cells purified from murine models provide a unique resource to study genetically defined breast cancer and response to targeted therapies. Here, we describe step-by-step experimental procedures for the successful establishment of murine mammary organoid lines isolated from mammary glands or mammary tumors driven by mutations in components of the PI3K pathway. These detailed protocols also include procedures to perform assays that can be adopted to screen response to drug treatments and to inform better therapies. For details on potential applications and use of this protocol, please refer to Yip et al. (2020).


Assuntos
Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/patologia , Técnicas de Cultura de Órgãos/métodos , Organoides , Fosfatidilinositol 3-Quinases/genética , Animais , Morte Celular/fisiologia , Criopreservação , Feminino , Glândulas Mamárias Animais/fisiologia , Neoplasias Mamárias Experimentais/genética , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos/instrumentação , Fosfatidilinositol 3-Quinases/metabolismo
8.
Nat Commun ; 12(1): 3140, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035258

RESUMO

INPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3ß lysosomal degradation and activation of Wnt/ß-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/ß-catenin therapies.


Assuntos
Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/genética , Endossomos/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lisossomos/metabolismo , Camundongos , Mutação , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Proteômica , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Análise Serial de Tecidos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
9.
Cells ; 10(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809714

RESUMO

Molecular alterations in cancer genes and associated signaling pathways are used to inform new treatments for precision medicine in cancer. Small molecule inhibitors and monoclonal antibodies directed at relevant cancer-related proteins have been instrumental in delivering successful treatments of some blood malignancies (e.g., imatinib with chronic myelogenous leukemia (CML)) and solid tumors (e.g., tamoxifen with ER positive breast cancer and trastuzumab for HER2-positive breast cancer). However, inherent limitations such as drug toxicity, as well as acquisition of de novo or acquired mechanisms of resistance, still cause treatment failure. Here we provide an up-to-date review of the successes and limitations of current targeted therapies for cancer treatment and highlight how recent technological advances have provided a new level of understanding of the molecular complexity underpinning resistance to cancer therapies. We also raise three basic questions concerning cancer drug discovery based on molecular markers and alterations of selected signaling pathways, and further discuss how combination therapies may become the preferable approach over monotherapy for cancer treatments. Finally, we consider novel therapeutic developments that may complement drug delivery and significantly improve clinical response and outcomes of cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Tomada de Decisão Clínica , Desenvolvimento de Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Medicina de Precisão
10.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276499

RESUMO

The phosphoinositide 3-kinase (PI3K)/AKT signalling pathway is hyperactivated in ~70% of breast cancers. Class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane in response to growth factor stimulation, leading to AKT activation to drive cell proliferation, survival and migration. PTEN negatively regulates PI3K/AKT signalling by dephosphorylating PtdIns(3,4,5)P3 to form PtdIns(4,5)P2. PtdIns(3,4,5)P3 can also be hydrolysed by the inositol polyphosphate 5-phosphatases (5-phosphatases) to produce PtdIns(3,4)P2. Interestingly, while PTEN is a bona fide tumour suppressor and is frequently mutated/lost in breast cancer, 5-phosphatases such as PIPP, SHIP2 and SYNJ2, have demonstrated more diverse roles in regulating mammary tumourigenesis. Reduced PIPP expression is associated with triple negative breast cancers and reduced relapse-free and overall survival. Although PIPP depletion enhances AKT phosphorylation and supports tumour growth, this also inhibits cell migration and metastasis in vivo, in a breast cancer oncogene-driven murine model. Paradoxically, SHIP2 and SYNJ2 are increased in primary breast tumours, which correlates with invasive disease and reduced survival. SHIP2 or SYNJ2 overexpression promotes breast tumourigenesis via AKT-dependent and independent mechanisms. This review will discuss how PTEN, PIPP, SHIP2 and SYNJ2 distinctly regulate multiple functional targets, and the mechanisms by which dysregulation of these distinct phosphoinositide phosphatases differentially affect breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Suscetibilidade a Doenças , Metabolismo dos Lipídeos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Humanos , Inositol Polifosfato 5-Fosfatases/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Mol Cell ; 80(2): 279-295.e8, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33065020

RESUMO

The PTEN tumor suppressor controls cell death and survival by regulating functions of various molecular targets. While the role of PTEN lipid-phosphatase activity on PtdIns(3,4,5)P3 and inhibition of PI3K pathway is well characterized, the biological relevance of PTEN protein-phosphatase activity remains undefined. Here, using knockin (KI) mice harboring cancer-associated and functionally relevant missense mutations, we show that although loss of PTEN lipid-phosphatase function cooperates with oncogenic PI3K to promote rapid mammary tumorigenesis, the additional loss of PTEN protein-phosphatase activity triggered an extensive cell death response evident in early and advanced mammary tumors. Omics and drug-targeting studies revealed that PI3Ks act to reduce glucocorticoid receptor (GR) levels, which are rescued by loss of PTEN protein-phosphatase activity to restrain cell survival. Thus, we find that the dual regulation of GR by PI3K and PTEN functions as a rheostat that can be exploited for the treatment of PTEN loss-driven cancers.


Assuntos
Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Carcinogênese , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Dexametasona/farmacologia , Feminino , Humanos , Isoenzimas/metabolismo , Camundongos , Modelos Biológicos , Mutação/genética , Organoides/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Estabilidade Proteica , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(45): 28056-28067, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097662

RESUMO

The Rac-GEF, P-Rex1, activates Rac1 signaling downstream of G protein-coupled receptors and PI3K. Increased P-Rex1 expression promotes melanoma progression; however, its role in breast cancer is complex, with differing reports of the effect of its expression on disease outcome. To address this we analyzed human databases, undertook gene array expression analysis, and generated unique murine models of P-Rex1 gain or loss of function. Analysis of PREX1 mRNA expression in breast cancer cDNA arrays and a METABRIC cohort revealed that higher PREX1 mRNA in ER+ve/luminal tumors was associated with poor outcome in luminal B cancers. Prex1 deletion in MMTV-neu or MMTV-PyMT mice reduced Rac1 activation in vivo and improved survival. High level MMTV-driven transgenic PREX1 expression resulted in apicobasal polarity defects and increased mammary epithelial cell proliferation associated with hyperplasia and development of de novo mammary tumors. MMTV-PREX1 expression in MMTV-neu mice increased tumor initiation and enhanced metastasis in vivo, but had no effect on primary tumor growth. Pharmacological inhibition of Rac1 or MEK1/2 reduced P-Rex1-driven tumoroid formation and cell invasion. Therefore, P-Rex1 can act as an oncogene and cooperate with HER2/neu to enhance breast cancer initiation and metastasis, despite having no effect on primary tumor growth.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Neoplasias Mamárias Experimentais , Metástase Neoplásica , Animais , Polaridade Celular/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia
14.
Cell Res ; 29(8): 628-640, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31209250

RESUMO

circRNAs arise from back splicing events during mRNA processing, and when deregulated can play an active role in cancer. Here we characterize a new circRNA (circPOK) encoded by the Zbtb7a gene (also kown as POKEMON, LRF) in the context of mesenchymal tumor progression. circPOK functions as a non-coding proto-oncogenic RNA independently and antithetically to its linear transcript counterpart, which acts as a tumor suppressor by encoding the Pokemon transcription factor. We find that circPOK regulates pro-proliferative and pro-angiogenic factors by co-activation of the ILF2/3 complex. Importantly, the expression of Pokemon protein and circRNA is aberrantly uncoupled in cancer through differential post-transcriptional regulation. Thus, we identify a novel type of genetic unit, the iRegulon, that yields biochemically distinct RNA products, circular and linear, with diverse and antithetical functions. Our findings further expand the cellular repertoire towards the control of normal biological outputs, while aberrant expression of such components may underlie disease pathogenesis including cancer.


Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/genética , RNA Circular/genética , Sarcoma/genética , Fatores de Transcrição/genética , Processamento Alternativo/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Éxons , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proto-Oncogenes/genética , RNA Interferente Pequeno/genética , Sarcoma/patologia , Fatores de Transcrição/metabolismo , Transfecção
15.
Science ; 364(6441)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097636

RESUMO

Activation of tumor suppressors for the treatment of human cancer has been a long sought, yet elusive, strategy. PTEN is a critical tumor suppressive phosphatase that is active in its dimer configuration at the plasma membrane. Polyubiquitination by the ubiquitin E3 ligase WWP1 (WW domain-containing ubiquitin E3 ligase 1) suppressed the dimerization, membrane recruitment, and function of PTEN. Either genetic ablation or pharmacological inhibition of WWP1 triggered PTEN reactivation and unleashed tumor suppressive activity. WWP1 appears to be a direct MYC (MYC proto-oncogene) target gene and was critical for MYC-driven tumorigenesis. We identified indole-3-carbinol, a compound found in cruciferous vegetables, as a natural and potent WWP1 inhibitor. Thus, our findings unravel a potential therapeutic strategy for cancer prevention and treatment through PTEN reactivation.


Assuntos
Anticarcinógenos/farmacologia , Indóis/farmacologia , Neoplasias/tratamento farmacológico , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Anticarcinógenos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Células HEK293 , Humanos , Indóis/uso terapêutico , Masculino , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , Multimerização Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
16.
Biomolecules ; 9(4)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999672

RESUMO

The PI3K-AKT-mTOR signal transduction pathway regulates a variety of biological processes including cell growth, cell cycle progression and proliferation, cellular metabolism, and cytoskeleton reorganization. Fine-tuning of the phosphatidylinositol 3-kinase (PI3K) pathway signaling output is essential for the maintenance of tissue homeostasis and uncontrolled activation of this cascade leads to a number of human pathologies including cancer. Inactivation of the tumor suppressor phosphatase and tensin homologue deleted on Chromosome 10 (PTEN) and/or activating mutations in the proto-typical lipid kinase PI3K have emerged as some of the most frequent events associated with human cancer and as a result the PI3K pathway has become a highly sought-after target for cancer therapies. In this review we summarize the essential role of the PTEN-PI3K axis in controlling cellular behaviors by modulating activation of key proto-oncogenic molecular nodes and functional targets. Further, we highlight important functional redundancies and peculiarities of these two critical enzymes that over the last few decades have become a central part of the cancer research field and have instructed hundreds of pre-clinical and clinical trials to better cancer treatments.


Assuntos
Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Humanos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais
17.
Development ; 145(18)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126904

RESUMO

Male fertility is dependent on spermatogonial stem cells (SSCs) that self-renew and produce differentiating germ cells. Growth factors produced within the testis are essential for SSC maintenance but intrinsic factors that dictate the SSC response to these stimuli are poorly characterised. Here, we have studied the role of GILZ, a TSC22D family protein and spermatogenesis regulator, in spermatogonial function and signalling. Although broadly expressed in the germline, GILZ was prominent in undifferentiated spermatogonia and Gilz deletion in adults resulted in exhaustion of the GFRα1+ SSC-containing population and germline degeneration. GILZ loss was associated with mTORC1 activation, suggesting enhanced growth factor signalling. Expression of deubiquitylase USP9X, an mTORC1 modulator required for spermatogenesis, was disrupted in Gilz mutants. Treatment with an mTOR inhibitor rescued GFRα1+ spermatogonial failure, indicating that GILZ-dependent mTORC1 inhibition is crucial for SSC maintenance. Analysis of cultured undifferentiated spermatogonia lacking GILZ confirmed aberrant activation of ERK MAPK upstream mTORC1 plus USP9X downregulation and interaction of GILZ with TSC22D proteins. Our data indicate an essential role for GILZ-TSC22D complexes in ensuring the appropriate response of undifferentiated spermatogonia to growth factors via distinct inputs to mTORC1.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Espermatogênese/fisiologia , Espermatogônias/citologia , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA , Endopeptidases/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Infertilidade Masculina/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatogênese/genética , Células-Tronco/citologia , Ubiquitina Tiolesterase
18.
Methods Mol Biol ; 1388: 289-306, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27033081

RESUMO

Manipulation of mammalian genome and generation of genetically engineered mouse models (GEMMs) has revolutionized the scientific approach to address biological questions. To date, a number of gene-targeting strategies have been devised and are available to investigators for the generation of genetically modified mouse lines. Nevertheless, irrespective of the methodological approach selected, there remain critical molecular steps that need to be performed and put in place in order to obtain controlled and well-characterized new animal models. Here we provide technical details for the (1) handling and maintenance of mouse embryonic stem (ES) cells; (2) analysis of genomic DNA by Southern Blot; and (3) sequencing and PCR analysis of recombined genomic DNA. These experimental steps have been undertaken for the generation of new mouse models harboring cancer-associated PTEN mutations.


Assuntos
Modelos Animais de Doenças , Técnicas de Introdução de Genes/métodos , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , Animais , Camundongos , Mutação
19.
Structure ; 23(10): 1952-1957, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26299948

RESUMO

As the phosphoinositol-3-kinase antagonist in the PI3K pathway, the PTEN tumor suppressor exerts phosphatase activity on diacylphosphatidylinositol triphosphate in the plasma membrane. Even partial loss of this activity enhances tumorigenesis, but a mechanistic basis for this aspect of PTEN physiology has not yet been established. It was recently proposed that PTEN mutations have dominant-negative effects in cancer via PTEN dimers. We show that PTEN forms homodimers in vitro, and determine a structural model of the complex from SAXS and Rosetta docking studies. Our findings shed new light on the cellular control mechanism of PTEN activity. Phosphorylation of the unstructured C-terminal tail of PTEN reduces PTEN activity, and this result was interpreted as a blockage of the PTEN membrane binding interface through this tail. The results presented here instead suggest that the C-terminal tail functions in stabilizing the homodimer, and that tail phosphorylation interferes with this stabilization.


Assuntos
Membrana Celular/química , Simulação de Acoplamento Molecular , PTEN Fosfo-Hidrolase/química , Fosfatos de Fosfatidilinositol/química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Cancer Cell ; 28(2): 155-69, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26267533

RESUMO

Metastasis is the major cause of breast cancer mortality. Phosphoinositide 3-kinase (PI3K) generated PtdIns(3,4,5)P3 activates AKT, which promotes breast cancer cell proliferation and regulates migration. To date, none of the inositol polyphosphate 5-phosphatases that inhibit PI3K/AKT signaling have been reported as tumor suppressors in breast cancer. Here, we show depletion of the inositol polyphosphate 5-phosphatase PIPP (INPP5J) increases breast cancer cell transformation, but reduces cell migration and invasion. Pipp ablation accelerates oncogene-driven breast cancer tumor growth in vivo, but paradoxically reduces metastasis by regulating AKT1-dependent tumor cell migration. PIPP mRNA expression is reduced in human ER-negative breast cancers associated with reduced long-term outcome. Collectively, our findings identify PIPP as a suppressor of oncogenic PI3K/AKT signaling in breast cancer.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Inositol Polifosfato 5-Fosfatases , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA