Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958673

RESUMO

The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.


Assuntos
Endocanabinoides , Microglia , Ratos , Animais , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Microglia/metabolismo , Ratos Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Retina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
2.
Neuropharmacology ; 185: 108450, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450278

RESUMO

The endocannabinoid system has been shown to be a putative therapeutic target for retinal disease. Here, we aimed to investigate the ability of the endocannabinoid 2-arachidonoylglycerol (2-AG) and novel inhibitors of its metabolic enzymes, α/ß-hydrolase domain-containing 6 (ABHD6) and monoacylglycerol lipase (MAGL), a) to protect the retina against excitotoxicity and b) the mechanisms involved in the neuroprotection. Sprague-Dawley rats, wild type and Akt2-/- C57BL/6 mice were intravitreally administered with phosphate-buffered saline or (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA). 2-AG was intravitreally co-administered with AMPA in the absence and presence of AM251 or AM630 (cannabinoid 1 and 2 receptor antagonists, respectively) or Wortmannin [Phosphoinositide 3-Kinase (PI3K)/Akt inhibitor]. Inhibitors of ABHD6 and dual ABHD6/MAGL (AM12100 and AM11920, respectively) were co-administered with AMPA intravitreally in rats. Immunohistochemistry was performed using antibodies raised against retinal neuronal markers (bNOS), microglia (Iba1) and macroglia (GFAP). TUNEL assay and real-time PCR were also employed. The CB2 receptor was expressed in rat retina (approx. 62% of CB1 expression). 2-AG attenuated the AMPA-induced increase in TUNEL+ cells. 2-AG activation of both CB1 and CB2 receptors and the PI3K/Akt downstream signaling pathway, as substantiated by the use of Akt2-/- mice, afforded neuroprotection against AMPA excitotoxicity. AM12100 and AM11920 attenuated the AMPA-induced glia activation and produced a dose-dependent partial neuroprotection, with the dual inhibitor AM11920 being more efficacious. These results show that 2-AG has the pharmacological profile of a putative therapeutic for retinal diseases characterized by neurodegeneration and neuroinflammation, when administered exogenously or by the inhibition of its metabolic enzymes.


Assuntos
Anti-Inflamatórios/administração & dosagem , Ácidos Araquidônicos/administração & dosagem , Endocanabinoides/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Glicerídeos/administração & dosagem , Monoacilglicerol Lipases/antagonistas & inibidores , Retina/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
3.
Neurochem Int ; 142: 104907, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220388

RESUMO

Cannabinoids have been shown to protect the retina from ischemic/excitotoxic insults. The aim of the present study was to investigate the neuroprotective and anti-inflammatory properties of the synthetic cannabinoid (R)-WIN55,212-2 (CB1/CB2 receptor agonist) when administered acutely or subchronically in control and AMPA treated retinas. Sprague-Dawley rats were intravitreally administered (acutely) with vehicle or AMPA, in the absence or presence of (R)-WIN55,212-2 (10-7-10-4M) alone or in combination with AM251 [CB1 receptor antagonist/inverse agonist,10-4M] and AM630 (CB2 receptor antagonist,10-4M). In addition, AMPA was co-administered with the racemic (R,S)-WIN55,212 (10-4Μ). (R)-WIN55,212-2 was also administered subchronically (25,100 µg/kg,i.p.,4d) in control and AMPA treated rats. Immunohistochemical studies were performed using antibodies against the CB1R, and retinal markers for retinal neurons (brain nitric oxide synthetase, bNOS) and microglia (ionized calcium binding adaptor molecule 1, Iba1). ELISA assay was employed to assess TNFα levels in AMPA treated retinas. Intravitreal administration of (R)-WIN55,212-2 reversed the AMPA induced loss of bNOS expressing amacrine cells, an effect that was blocked by both AM251 and AM630. (R,S)WIN55,212 had no effect. (R)-WIN55,212-2 also reduced a) the AMPA induced activation of microglia, by activating CB2 receptors that were shown to be colocalized with Iba1+ reactive microglial cells, and b) TNFα levels in retina. (R)-WIN55,212-2 administered subchronically led to the downregulation of CB1 receptors at the high dose of 100 µg/kg(i.p.), and to the attenuation of the WIN55,212-2 induced neuroprotection of amacrine cells. At the same dose, (R)-WIN55,212-2 did not attenuate the AMPA induced increase in the number of reactive microglia cells, suggesting CB2 receptor downregulation under subchronic conditions. This study provides new findings regarding the role of CB1 and CB2 receptor activation by the synthetic cannabinoid (R)-WIN55,212-2, administered acutely or sub-chronically, on neuron viability and microglia activation in healthy and diseased retina.


Assuntos
Anti-Inflamatórios/administração & dosagem , Benzoxazinas/administração & dosagem , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Retina/metabolismo , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Retina/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade
4.
Exp Eye Res ; 185: 107694, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31199905

RESUMO

Endogenous and synthetic cannabinoids have been shown to provide neuroprotection to retinal neurons in acute animal models of retinopathy. Chronic exposure to cannabinoid receptor (CB1R) agonists has been reported to induce downregulation of the CB1R in brain and behavioral tolerance. The aim of this study was to investigate the effect of subchronic/chronic cannabinoid administration on CB1R downregulation in normal rat retina, its downstream prosurvival signaling and subsequent effect on retinal neuroprotection against AMPA excitotoxicity. Sprague-Dawley rats were administered intraperitoneally with vehicle (Control), the endogenous N-arachidonoyl ethanolamine (AEA), and the synthetic cannabinoids R-(+)-Methanandamide (MethAEA) and HU-210 daily (25, 50, 100 µg/kg) for four or fourteen days (4d/14d, subchronic/chronic administration, respectively). HU-210 was also administered acutely as follows, vehicle injection for 13 days and a single dose of HU-210 on the 14th day. Immunohistochemistry studies and Western blot analysis were employed to assess CB1R expression in control and AMPA treated retinas and cannabinoid induced changes in Akt and ERK1/2 phosphorylation (ph). Real time PCR was employed to examine the effect of MethAEA (50 mg/kg,4d) on CB1R mRNA expression. AEA, MethAEA and HU-210 attenuated CB1R expression in a dose-dependent manner (25, 50, 100 µg/kg), after subchronic and chronic administration. No effect was observed at the lower dose of 25 µg/kg. MethAEA (50 mg/kg,4d) attenuated CB1R mRNA expression. AM251 (CB1 antagonist/inverse agonist, 0.5 mg/kg,4d), administered prior to HU-210 (50 µg/kg,4d) inhibited CB1R downregulation. Chronic/subchronic treatments (50 µg/kg) of HU-210 and MethAEA reduced levels of ph-Akt and ph-Akt/ph-ERK1/2, respectively. AEA had no effect on ph-Akt nor ph-ERK1/2. All three cannabinoids (50 µg/kg,4d) failed to protect brain nitric oxide synthetase (bNOS) expressing amacrine cells against AMPA excitotoxicity, in agreement with the downregulation of CB1 receptor. At the lower doses of 12.5 and 25 µg/kg, HU-210 protected bNOS-expressing amacrine cells. This study provides novel information regarding agonist-induced CB1R downregulation in rat retina after subchronic/chronic cannabinoid treatment, and its effect on downstream prosurvival signaling and neuroprotection.


Assuntos
Ácidos Araquidônicos/farmacologia , Dronabinol/análogos & derivados , Endocanabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Retina/efeitos dos fármacos , Animais , Western Blotting , Regulação para Baixo , Dronabinol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Injeções Intraperitoneais , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Fosforilação , Alcamidas Poli-Insaturadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptor CB1 de Canabinoide/genética , Retina/metabolismo , Transdução de Sinais/fisiologia
5.
Diabetes ; 67(2): 321-333, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208634

RESUMO

BNN27, a C17-spiroepoxy derivative of DHEA, was shown to have antiapoptotic properties via mechanisms involving the nerve growth factor receptors (tropomyosin-related kinase A [TrkA]/neurotrophin receptor p75 [p75NTR]). In this study, we examined the effects of BNN27 on neural/glial cell function, apoptosis, and inflammation in the experimental rat streptozotocin (STZ) model of diabetic retinopathy (DR). The ability of BNN27 to activate the TrkA receptor and regulate p75NTR expression was investigated. BNN27 (2,10, and 50 mg/kg i.p. for 7 days) administration 4 weeks post-STZ injection (paradigm A) reversed the diabetes-induced glial activation and loss of function of amacrine cells (brain nitric oxide synthetase/tyrosine hydroxylase expression) and ganglion cell axons via a TrkA receptor (TrkAR)-dependent mechanism. BNN27 activated/phosphorylated the TrkAY490 residue in the absence but not the presence of TrkAR inhibitor and abolished the diabetes-induced increase in p75NTR expression. However, it had no effect on retinal cell death (TUNEL+ cells). A similar result was observed when BNN27 (10 mg/kg i.p.) was administered at the onset of diabetes, every other day for 4 weeks (paradigm B). However, BNN27 decreased the activation of caspase-3 in both paradigms. Finally, BNN27 reduced the proinflammatory (TNFα and IL-1ß) and increased the anti-inflammatory (IL-10 and IL-4) cytokine levels. These findings suggest that BNN27 has the pharmacological profile of a therapeutic for DR, since it targets both the neurodegenerative and inflammatory components of the disease.


Assuntos
Células Amácrinas/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Desidroepiandrosterona/uso terapêutico , Retinopatia Diabética/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Receptor trkA/agonistas , Retina/efeitos dos fármacos , Células Amácrinas/imunologia , Células Amácrinas/metabolismo , Células Amácrinas/patologia , Animais , Anti-Inflamatórios/administração & dosagem , Axônios/efeitos dos fármacos , Axônios/imunologia , Axônios/metabolismo , Axônios/patologia , Desidroepiandrosterona/administração & dosagem , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Retinopatia Diabética/imunologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Relação Dose-Resposta a Droga , Proteínas do Olho/agonistas , Proteínas do Olho/metabolismo , Feminino , Gânglios Sensitivos/efeitos dos fármacos , Gânglios Sensitivos/imunologia , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/patologia , Masculino , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Neuroglia/metabolismo , Neuroglia/patologia , Fármacos Neuroprotetores/administração & dosagem , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural/agonistas , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Retina/imunologia , Retina/patologia , Retina/fisiopatologia , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA