Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37631482

RESUMO

The use of alternative raw materials, such as agricultural biomass and by-products, in particleboard (PB) production is a viable approach to address the growing global demand for sustainable wood-based materials. The purpose of this study was to investigate the effect of the type of hardener and tannin-glyoxal (TG) adhesive formulation on the cohesion and adhesion performance of TG adhesives for areca-based PB. Two types of hardeners were used, NH4Cl and NaOH, and three adhesive formulations with tannin:glyoxal ratios (i.e., F1 (1:2), F2 (1:1), and F3 (2:1)) were applied to improve the cohesion performance and adhesion for areca-based TG adhesive for PB. The basic, chemical, and mechanical properties of the TG adhesive were investigated using a Fourier transform infrared spectrometer, rotational rheometer, dynamic mechanical analyzer (DMA), and X-ray diffractometer. The results show that a high glyoxal percentage increases the percentage of crystallinity in the adhesive. This shows that the increase in glyoxal is able to form better polymer bonds. DMA analysis shows that the adhesive is elastic and the use of NH4Cl hardener has better mechanical properties in thermodynamic changes than the adhesive using NaOH hardener. Finally, the adhesion performance of the TG adhesives on various types of hardeners and adhesive formulations was evaluated on areca-based PB panels. Regardless of the type of hardener, the TG adhesive made with F1 had better cohesion and adhesion properties compared to F2 and F3. Combining F1 with NH4Cl produced areca-based PB panels with better physical and mechanical qualities than the adhesive formulations F2 and F3, and complied with Type 8 particleboard according to SNI 03-2105-2006 standard.

2.
Polymers (Basel) ; 15(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987272

RESUMO

This study aimed to develop tannin-based non-isocyanate polyurethane (tannin-Bio-NIPU) and tannin-based polyurethane (tannin-Bio-PU) resins for the impregnation of ramie fibers (Boehmeria nivea L.) and investigate their mechanical and thermal properties. The reaction between the tannin extract, dimethyl carbonate, and hexamethylene diamine produced the tannin-Bio-NIPU resin, while the tannin-Bio-PU was made with polymeric diphenylmethane diisocyanate (pMDI). Two types of ramie fiber were used: natural ramie without pre-treatment (RN) and with pre-treatment (RH). They were impregnated in a vacuum chamber with tannin-based Bio-PU resins for 60 min at 25 °C under 50 kPa. The yield of the tannin extract produced was 26.43 ± 1.36%. Fourier-transform infrared (FTIR) spectroscopy showed that both resin types produced urethane (-NCO) groups. The viscosity and cohesion strength of tannin-Bio-NIPU (20.35 mPa·s and 5.08 Pa) were lower than those of tannin-Bio-PU (42.70 mPa·s and 10.67 Pa). The RN fiber type (18.9% residue) was more thermally stable than RH (7.3% residue). The impregnation process with both resins could improve the ramie fibers' thermal stability and mechanical strength. The highest thermal stability was found in RN impregnated with the tannin-Bio-PU resin (30.5% residue). The highest tensile strength was determined in the tannin-Bio-NIPU RN of 451.3 MPa. The tannin-Bio-PU resin gave the highest MOE for both fiber types (RN of 13.5 GPa and RH of 11.7 GPa) compared to the tannin-Bio-NIPU resin.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839059

RESUMO

Nanotechnology, in a sense, is not entirely a new concept [...].

4.
Materials (Basel) ; 15(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36556880

RESUMO

The purpose of the present article is to study the bending strength of glulam prepared by plane tree (Platanus Orientalis-L) wood layers adhered by UF resin with different formaldehyde to urea molar ratios containing the modified starch adhesive with different NaOCl concentrations. Artificial neural network (ANN) as a modern tool was used to predict this response, too. The multilayer perceptron (MLP) models were used to predict the modulus of rapture (MOR) and the statistics, including the determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used to validate the prediction. Combining the ANN and the genetic algorithm by using the multiple objective and nonlinear constraint functions, the optimum point was determined based on the experimental and estimated data, respectively. The characterization analysis, performed by FTIR and XRD, was used to describe the effect of the inputs on the output. The results indicated that the statistics obtained show excellent MOR predictions by the feed-forward neural network using Levenberg-Marquardt algorithms. The comparison of the optimal output of the actual values obtained by the genetic algorithm resulting from the multi-objective function and the optimal output of the values estimated by the nonlinear constraint function indicates a minimum difference between both functions.

5.
Polymers (Basel) ; 13(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451315

RESUMO

The potential of ammonium lignosulfonate (ALS) as an eco-friendly additive to urea-formaldehyde (UF) resin for manufacturing high-density fiberboard (HDF) panels with acceptable properties and low free formaldehyde emission was investigated in this work. The HDF panels were manufactured in the laboratory with very low UF resin content (4%) and ALS addition levels varying from 4% to 8% based on the mass of the dry wood fibers. The press factor applied was 15 s·mm-1. The physical properties (water absorption and thickness swelling), mechanical properties (bending strength, modulus of elasticity, and internal bond strength), and free formaldehyde emission were evaluated in accordance with the European standards. In general, the developed HDF panels exhibited acceptable physical and mechanical properties, fulfilling the standard requirements for HDF panels for use in load-bearing applications. Markedly, the laboratory-produced panels had low free formaldehyde emission ranging from 2.0 to 1.4 mg/100 g, thus fulfilling the requirements of the E0 and super E0 emission grades and confirming the positive effect of ALS as a formaldehyde scavenger. The thermal analyses performed, i.e., differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the main findings of the research. It was concluded that ALS as a bio-based, formaldehyde-free adhesive can be efficiently utilized as an eco-friendly additive to UF adhesive formulations for manufacturing wood-based panels under industrial conditions.

6.
Polymers (Basel) ; 13(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669474

RESUMO

Human health problems and formaldehyde emission from wood-based composites are some of the major drawbacks of the traditional synthetic adhesives such as urea formaldehyde resins. There have been many attempts to decrease formaldehyde emission and replace urea formaldehyde resins with bio-based adhesives for wood-based composites. Because of some weakness in soy-based adhesive, chemicals have been used as modifiers. Modified soy-based adhesives without any formaldehyde have been successfully used to prepare wood panels. To achieve this, different synthetic cross-linking chemicals such as phenol formaldehyde resins and polyamidoamine-epichlorohydrin were used. However, in reality, what we need are totally green adhesives that use natural materials. In our previous research work, the use of tannins in combination with soy-based adhesives to make wood composites was investigated. Thus, in this research work, the feasibility of using three types of natural tannins (quebracho, mimosa and chestnut tannins) as cross-linking materials for soy adhesive was studied. The chemical bond formation and adhesion behaviors of tannin-modified soy adhesives were also investigated by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF-MS) and thermo-mechanical analysis (TMA). The results showed that at ambient temperature, both ionic and covalent bonds formed between tannin constituents and amino acids; however, at higher temperature, covalent bonds are largely predominate. Based on the results obtained from the thermo-mechanical analysis, the modulus of elasticity (MOE) of soy adhesive is increased by adding tannins to its formulation. In addition, the chemical bond formation was proved by MALDI-ToF-MS.

7.
Polymers (Basel) ; 13(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669944

RESUMO

The potential of using residual softwood fibers from the pulp and paper industry for producing eco-friendly, zero-formaldehyde fiberboard panels, bonded with calcium lignosulfonate (CLS) as a lignin-based, formaldehyde free adhesive, was investigated in this work. Fiberboard panels were manufactured in the laboratory by applying CLS addition content ranging from 8% to 14% (on the dry fibers). The physical and mechanical properties of the developed composites, i.e., water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), as well as the free formaldehyde emission, were evaluated according to the European norms. In general, only the composites, developed with 14% CLS content, exhibited MOE and MOR values, comparable with the standard requirements for medium-density fiberboards (MDF) for use in dry conditions. All laboratory-produced composites demonstrated significantly deteriorated moisture-related properties, i.e., WA (24 h) and TS (24 h), which is a major drawback. Noticeably, the fiberboards produced had a close-to-zero formaldehyde content, reaching the super E0 class (≤1.5 mg/100 g), with values, ranging from 0.8 mg/100 g to 1.1 mg/100 g, i.e., equivalent to formaldehyde emission of natural wood. The amount of CLS adhesive had no significant effect on formaldehyde content.

8.
Polymers (Basel) ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466230

RESUMO

Wood composites are man-made materials that can be easily manufactured from a variety of raw lignocellulosic materials and the appropriate binder [...].

9.
Polymers (Basel) ; 12(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668781

RESUMO

The main advantage of wood composites is that they can be designed for specific performance requirements or specific qualities, since they are man-made [...].

10.
Polymers (Basel) ; 12(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717892

RESUMO

In this research, acetylated wood (Accoya) was tested in ground contact in central Greece. After ten years of exposure during a ground stake test, acetylated pine wood (Pinus radiata) stakes, with a 20% acetyl weight gain, were completely intact and showed no visual decay (decay rating: 0). However, the key mechanical properties of Accoya wood, that is, modulus of elasticity (MOE) and modulus of rupture (MOR) after 10 years of ground contact, were significantly reduced by 32.8% and 29.6%, respectively, despite an excellent visual result since no evidence of fungal attack was identified. This contradiction could possibly indicate that the hallmarks of decay, i.e., brown-rot decay of acetylated wood can be the significant loss of mechanical properties before decay is actually visible.

11.
Polymers (Basel) ; 12(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605051

RESUMO

Urea-formaldehyde (UF) resins are primary petroleum-based, increasing their potential environmental footprint. Identifying additives to reduce the total amount of resin needed without adversely affecting the panel properties could reduce these impacts. Wollastonite is a mineral containing calcium and silica that has been used as an additive in a variety of materials and may be useful as a resin extender. Nanoscale wollastonite has been shown to enhance the panel properties but is costly. Micron-scale wollastonite may be a less costly alternative. Medium-density fiberboards were produced by blending a hardwood furnish with UF alone, micron-sized wollastonite alone, or a 9:1 ratio of UF to wollastonite. Panels containing of only wollastonite had poor properties, but the properties of panels with 9:1 UF/wollastonite were similar to the UF-alone panels, except for the internal bond strength. The results suggest that small amounts of micron-sized wollastonite could serve as a resin extender. Further studies are suggested to determine if the micron-sized material has similar positive effects on the resin curing rate.

12.
Polymers (Basel) ; 12(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414198

RESUMO

This review presents first, rather succinctly, what are the important points to look out for when preparing good wood composites, the main types of wood composites manufactured industrially, and the mainly oil-derived wood composite adhesives and binders that dominate and have been dominating this industry. Also briefly described are the most characteristic biosourced, renewable-derived adhesives that are actively researched as substitutes. For all these adhesives, synthetic and biosourced, the reviews expose the considerable progresses which have occurred relatively recently, with a host of new approaches and ideas having been proposed and tested, some even implemented, but with even many more already appearing on the horizon.

13.
Polymers (Basel) ; 12(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272812

RESUMO

Wood-composite panel factories are in shortage of raw materials; therefore, finding new sources of fibers is vital for sustainable production. The effects of chicken feathers, as a renewable source of natural fibers, on the physicomechanical properties of medium-density fiberboard (MDF) and particleboard panels were investigated here. Wollastonite was added to resin to compensate possible negative effects of chicken feathers. Only feathers of the bodies of chickens were added to composite matrix at 5% and 10% content, based on the dry weight of the raw material, particles or fibers. Results showed significant negative effects of 10%-feather content on physical and mechanical properties. However, feather content of 5% showed some promising results. Addition of wollastonite to resin resulted in the improvement of some physical and mechanical properties. Wollastonite acted as reinforcing filler in resin and improved some of the properties; therefore, future studies should be carried out on the reduction of resin content. Moreover, density functional theory (DFT) demonstrated the formation of new bonds between wollastonite and carbohydrate polymers in the wood cell wall. It was concluded that chicken feathers have potential in wood-composite panel production.

14.
Nanomaterials (Basel) ; 10(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218200

RESUMO

An issue in engineered wood products, like oriented strand lumber (OSL), is the low thermal conductivity coefficient of raw material, preventing the fast transfer of heat into the core of composite mats. The aim of this paper is to investigate the effect of sepiolite at nanoscale with aspect ratio of 1:15, in mixture with urea-formaldehyde resin (UF), and its effect on thermal conductivity coefficient of the final panel. Sepiolite was mixed with UF resin for 20 min prior to being sprayed onto wood strips in a rotary drum. Ten percent of sepiolite was mixed with the resin, based on the dry weight of UF resin. OSL panels with two resin contents, namely 8% and 10%, were manufactured. Temperature was measured at the core section of the mat at 5-second intervals, using a digital thermometer. The thermal conductivity coefficient of OSL specimens was calculated based on Fourier's Law for heat conduction. With regard to the fact that an improved thermal conductivity would ultimately be translated into a more effective polymerization of the resin, hardness of the panel was measured, at different depths of penetration of the Janka ball, to find out how the improved conductivity affected the hardness of the produced composite panels. The measurement of core temperature in OSL panels revealed that sepiolite-treated panels with 10% resin content had a higher core temperature in comparison to the ones containing 8% resin. Furthermore, it was revealed that the addition of sepiolite increased thermal conductivity in OSL panels made with 8% and 10% resin contents, by 36% and 40%, respectively. The addition of sepiolite significantly increased hardness values in all penetration depths. Hardness increased as sepiolite content increased. Considering the fact that the amount of sepiolite content was very low, and therefore it could not physically impact hardness increase, the significant increase in hardness values was attributed to the improvement in the thermal conductivity of panels and subsequent, more complete, curing of resin.

15.
Polymers (Basel) ; 12(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028564

RESUMO

The aim of this paper was to improve the fire retardancy of beech wood by graphene. Six fire properties, namely time to onset of ignition, time to onset of glowing, back-darkening time, back-holing time, burnt area and weight loss were measured using a newly developed apparatus with piloted ignition. A set of specimens was treated with nano-wollastonite (NW) for comparison with the results of graphene-treated specimens. Graphene and NW were mixed in a water-based paint and brushed on the front and back surface of specimens. Results demonstrated significant improving effects of graphene on times to onset of ignition and glowing. Moreover, graphene drastically decreased the burnt area. Comparison between graphene- and NW-treated specimens demonstrated the superiority of graphene in all six fire properties measured here. Fire retardancy impact of graphene was attributed to its very low reaction ability with oxygen, as well as its high and low thermal conductivity in in-plane and cross-section directions, respectively. The improved fire-retardancy properties by the addition of graphene in paint implied its effectiveness in hindering the spread of fire in buildings and structures, providing a longer timespan to extinguish a fire, and ultimately reducing the loss of life and property. Based on the improvements in fire properties achieved in graphene-treated specimens, it was concluded that graphene has a great potential to be used as a fire retardant in solid wood species.

16.
Polymers (Basel) ; 11(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739612

RESUMO

The aim of this work is to investigate the effect of the fortification level of nanowollastonite on urea-formaldehyde resin (UF) and its effect on mechanical and physical properties of oriented strand lumbers (OSL). Two resin contents are applied, namely, 8% and 10%. Nanowollastonite is mixed with the resin at two levels (10% and 20%). It is found that the fortification of UF resin with 10% nanowollastonite can be considered as an optimum level. When nanowollastonite content is higher (that is, 20%), higher volume of UF resin is left over from the process of sticking the strips together, and therefore is absorbed by wollastonite nanofibers. The mechanism involved in the fortification of UF resin with nanowollastonite, which results in an improvement of thickness swelling values, can be attributed to the following two main factors: (i) nanowollastonite compounds making active bonds with the cellulose hydroxyl groups, putting them out of reach for bonding with the water molecules and (ii) high thermal conductivity coefficient of wollastonite improving the transfer of heat to different layers of the OSL mat, facilitating better and more complete resin curing. Since nanowollastonite contributes to making bonds between the wood strips, which consequently improves physical and mechanical properties, its use can be safely recommended in the OSL production process to improve the physical and mechanical properties of the panel.

17.
Polymers (Basel) ; 11(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547089

RESUMO

The aim of this study was to investigate the physical and mechanical properties of thermally modified beech wood impregnated with silver nano-suspension and to examine their relationship with the crystallinity of cellulose. Specimens were impregnated with a 400 ppm nanosilver suspension (NS); at least, 90% of silver nano-particles ranged between 20 and 100 nano-meters. Heat treatment took place in a laboratory oven at three temperatures, namely 145, 165, and 185 °C. Physical properties and mechanical properties of treated wood demonstrated statistically insignificant fluctuations at low temperatures compared to control specimens. On the other hand, an increase of temperature to 185 °C had a significant effect on all properties. Physical properties (volumetric swelling and water absorption) and mechanical properties (MOR and MOE) of treated wood demonstrated statistically insignificant fluctuations at low temperatures compared to control specimens. This degradation ultimately resulted in significant decrease in MOR, impact strength, and physical properties. However, thermal modification at 185 °C did not seem to cause significant fluctuations in MOE and compression strength parallel to grain. As a consequence of the thermal modification, part of amorphous cellulose was changed to crystalline cellulose. At low temperatures an increased crystallinity caused some of the properties to be improved. Crystallinity also demonstrated a decrease in NS-HT185 in comparison to HT185 treatment. TCr indices in specimens thermally treated at 145 °C revealed a significant increase as a result of impregnation with nanosilver suspension. This improvement in TCr index resulted in a noticeable increase in MOR and MOE values. Other properties did not show significant fluctuations, suggesting that the effect of the increased crystallinity and cross-linking in lignin was more than the negative effect of the low cell-wall polymer degradation caused by thermal modification. Change of amorphous cellulose to crystalline cellulose, as well as cross-linking in lignin, partially ameliorated the negative effects of thermal degradation at higher temperatures and therefore, compression parallel to grain and modulus of elasticity did not decrease significantly. Overall, it can be concluded that increased crystallinity and cross-linking in lignin can compensate for some decreased properties caused by thermal modification, but it would be significantly dependent on the temperature under which modification is carried out. Impregnating specimens with silver nano-suspension prior to thermal modification enhanced the effects of thermal modification as a result of improved thermal conductivity.

18.
Nanomaterials (Basel) ; 9(4)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013808

RESUMO

This work briefly reviews the research milestones in the area of wood chemical modification, focusing on acetylated and furfurylated wood which have been scaled up, and exploits the solutions that nanotechnology can offer to wood protection as an alternative green innovative approach in improving key wood properties, namely the dimensional stability when subjected to a fluctuating moisture content and a susceptibility to biodegradability by microorganisms. Recently, nanomaterials were found to be able applicable in wood science. The target is to improve some special physicochemical characteristics of wood in order to resist extreme conditions (climate, bacteria, etc.), giving an enhanced potentiality. It is well-established that the wood cell wall shows a porosity of molecular scale dimensions; this is caused by the partial filling of spaces between the microfibrils of the cellulose mainly by polyoses and lignin. The small-sized nanoparticles can deeply and effectively penetrate into the wood, altering its surface chemistry, improving its properties, and therefore, resulting in a hyper-performance product.

19.
Polymers (Basel) ; 12(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905819

RESUMO

Wood composites are manufactured from a variety of materials [...].

20.
Bioresour Technol ; 101(15): 6147-50, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20231093

RESUMO

The work described in this paper demonstrated that acetylation of pine wood up to 16.4 weight percent gain has a positive effect on the compression strength. Higher modification levels resulted in a reduction of the compression strength of wood, compared to the untreated wood. A comprehensive investigation of the effect of molecular size of the substituent group of softwood modified with linear chain carboxylic acid anhydrides, namely acetic, propionic, butyric, valeric, hexanoic, upon the compression strength has also been performed. It was found that the improvement of compression strength imparted by chemical modification is independent of the degree of bulking of the cell wall, but correlates well with the degree of substitution of the cell wall hydroxyl groups.


Assuntos
Anidridos/química , Ácidos Carboxílicos/química , Pinus/química , Madeira/química , Força Compressiva , Módulo de Elasticidade , Dureza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA