Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 290(9): 2412-2436, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36178468

RESUMO

Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the main chemical defence of host via detoxification by a malonyl-CoA-dependent enzyme homologous to xenobiotic metabolizing arylamine N-acetyltransferase (NAT). In Fusarium verticillioides (teleomorph Gibberella moniliformis, GIBMO), this N-malonyltransferase activity is attributed to (GIBMO)NAT1, and the fungus has two additional isoenzymes, (GIBMO)NAT3 (N-acetyltransferase) and (GIBMO)NAT2 (unknown function). We present the crystallographic structure of (GIBMO)NAT1, also modelling other fungal NAT homologues. Monomeric (GIBMO)NAT1 is distinctive, with access to the catalytic core through two "tunnel-like" entries separated by a "bridge-like" helix. In the quaternary arrangement, (GIBMO)NAT1 monomers interact in pairs along an extensive interface whereby one entry of each monomer is covered by the N-terminus of the other monomer. Although monomeric (GIBMO)NAT1 apparently accommodates acetyl-CoA better than malonyl-CoA, dimerization changes the active site to allow malonyl-CoA to reach the catalytic triad (Cys110, His158 and Asp173) via the single uncovered entry, and anchor its terminal carboxyl-group via hydrogen bonds to Arg109, Asn157 and Thr261. Lacking a terminal carboxyl-group, acetyl-CoA cannot form such stabilizing interactions, while longer acyl-CoAs enter the active site but cannot reach catalytic Cys. Other NAT isoenzymes lack such structural features, with (GIBMO)NAT3 resembling bacterial NATs and (GIBMO)NAT2 adopting a structure intermediate between (GIBMO)NAT1 and (GIBMO)NAT3. Biochemical assays confirmed differential donor substrate preference of (GIBMO)NAT isoenzymes, with phylogenetic analysis demonstrating evolutionary separation. Given the role of (GIBMO)NAT1 in enhancing Fusarium pathogenicity, unravelling the structure and function of this enzyme may benefit research into more targeted strategies for pathogen control.


Assuntos
Arilamina N-Acetiltransferase , Fusarium , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/genética , Fusarium/genética , Isoenzimas/genética , Filogenia , Acetilcoenzima A , Acetiltransferases
2.
Chemosphere ; 306: 135535, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35792217

RESUMO

The chelating and sequestering ability of a glyphosate metabolite, the aminomethylphosphonic acid (AMPA) towards bi- and trivalent metal cations, such as Ca2+, Mg2+, Zn2+, Cu2+ and Al3+, were investigated in aqueous solutions of NaCl, in an ionic strength range of 0.1 ≤ I/mol dm-3 ≤ 1.0 and at constant temperature of T = 298.15 ± 0.15 K. The investigations on the acid-base properties and complexing ability were performed, by means of potentiometry, in conditions of different cM:cAMPA molar ratios and pH values. The formation of insoluble species was experimentally observed in the Mn+/AMPA2- systems, and the solid phases were characterized by means of X-Ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and InfraRed Attenuated Total Reflection spectroscopy (IR-ATR). The dependence on ionic strength of the stability constants of the Mn+/AMPA2- complexes species, determined at different ionic strengths, was modelled by the Debye-Hückel type equation. The sequestering ability of AMPA toward the investigated metal cations was evaluated by pL0.5 parameter.


Assuntos
Praguicidas , Cátions , Metais , Organofosfonatos , Zinco/química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
3.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628124

RESUMO

In the recent years a considerable effort has been devoted to foster the understanding of the basic mechanisms underlying the dynamical arrest that is involved in glass forming in supercooled liquids and in the sol-gel transition. The elucidation of the nature of such processes represents one of the most challenging unsolved problems in the field of material science. In this context, two important theories have contributed significantly to the interpretation of these phenomena: the Mode-Coupling theory (MCT) and the Percolation theory (PT). These theories are rooted on the two pillars of statistical physics, universality and scale laws, and their original formulations have been subsequently modified to account for the fundamental concepts of Energy Landscape (EL) and of the universality of the fragile to strong dynamical crossover (FSC). In this review, we discuss experimental and theoretical results, including Molecular Dynamics (MD) simulations, reported in the literature for colloidal and polymer systems displaying both glass and sol-gel transitions. Special focus is dedicated to the analysis of the interferences between these transitions and on the possible interplay between MCT and PT. By reviewing recent theoretical developments, we show that such interplay between sol-gel and glass transitions may be interpreted in terms of the extended F13 MCT model that describes these processes based on the presence of a glass-glass transition line terminating in an A3 cusp-like singularity (near which the logarithmic decay of the density correlator is observed). This transition line originates from the presence of two different amorphous structures, one generated by the inter-particle attraction and the other by the pure repulsion characteristic of hard spheres. We show here, combining literature results with some new results, that such a situation can be generated, and therefore experimentally studied, by considering colloidal-like particles interacting via a hard core plus an attractive square well potential. In the final part of this review, scaling laws associated both to MCT and PT are applied to describe, by means of these two theories, the specific viscoelastic properties of some systems.


Assuntos
Vidro , Vitrificação
4.
Sci Total Environ ; 827: 154393, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35271922

RESUMO

An economic and CO2 emission impact assessment of the production of H2 from municipal solid waste in the two configurations of retrofitting an existing waste to energy plant with an electrolysis unit (WtE + El) and of hydrogen production via waste gasification (WtH2) is made with respect to reference cases of H2 production by steam reforming of methane (SMR) or of water electrolysis (El). The results are analyzed with reference to two scenarios depending on whether the fate of waste disposal emissions for SMR and El is accounted. The costs of H2 production as a function of waste gate fee and CO2 taxation as well as the CO2 emissions for both scenarios and the four cases of H2 production analyzed are reported. The results show that produce H2 from a WtE plant hybridized with an electrolyzer could be economic only when the plant is free from depreciation costs and no CO2 taxation exists. Conversely, WtH2 solution results preferable when CO2 taxation will be applied to the non-biogenic fraction of waste. Conditions when WtH2 may results competitive to SMR are defined, in terms of both cost of production and CO2 emissions. With respect to El case, WtH2 results more competitive under the assumption made in terms of combined costs and CO2 emissions.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Carbono , Dióxido de Carbono/análise , Hidrogênio , Metano , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Vapor
5.
ACS Catal ; 12(5): 2861-2876, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35280435

RESUMO

The prospects, needs and limits in current approaches in catalysis to accelerate the transition to e-chemistry, where this term indicates a fossil fuel-free chemical production, are discussed. It is suggested that e-chemistry is a necessary element of the transformation to meet the targets of net zero emissions by year 2050 and that this conversion from the current petrochemistry is feasible. However, the acceleration of the development of catalytic technologies based on the use of renewable energy sources (indicated as reactive catalysis) is necessary, evidencing that these are part of a system of changes and thus should be assessed from this perspective. However, it is perceived that the current studies in the area are not properly addressing the needs to develop the catalytic technologies required for e-chemistry, presenting a series of relevant aspects and directions in which research should be focused to develop the framework system transformation necessary to implement e-chemistry.

6.
ChemistryOpen ; 10(10): 1033-1040, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648236

RESUMO

We report on the facile synthesis of SiO2 @nitrized-TiO2 nanocomposite (NST) by calcination of TiO2 xerogel with OctaAmmonium POSS® (N-POSS; POSS=polyhedral oligomeric silsesquioxanes). The as-obtained nanoporous mixed oxide is constituted by uniformly distributed SiO2 and nitrized-TiO2 , where the silica component is present in an amorphous state and TiO2 in an anatase/rutile mixed phase (92.1 % vs. 7.9 %, respectively) with very small anatase crystallites (3.7 nm). The TiO2 lattice is nitrized both at interstitial and substitutional positions. NST features a negatively charged surface with a remarkable surface area (406 m2 g-1 ), endowed with special adsorption capabilities towards cationic dyes. Its photocatalytic behavior was tested by following the degradation of standard aqueous methylene blue and methyl orange solutions under UV and visible light irradiation, according to ISO 10678:2010. For comparison, analogous investigations were carried out on a silica-free N-TiO2 , obtained by using NH4 Cl as nitrogen source.

7.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299171

RESUMO

NMR spectroscopy is used in the temperature range 180-350 K to study the local order and transport properties of pure liquid water (bulk and confined) and its solutions with glycerol and methanol at different molar fractions. We focused our interest on the hydrophobic effects (HE), i.e., the competition between hydrophilic and hydrophobic interactions. Nowadays, compared to hydrophilicity, little is known about hydrophobicity. Therefore, the main purpose of this study is to gain new information about hydrophobicity. As the liquid water properties are dominated by polymorphism (two coexisting liquid phases of high and low density) due to hydrogen bond interactions (HB), creating (especially in the supercooled regime) the tetrahedral networking, we focused our interest to the HE of these structures. We measured the relaxation times (T1 and T2) and the self-diffusion (DS). From these times, we took advantage of the NMR property to follow the behaviors of each molecular component (the hydrophilic and hydrophobic groups) separately. In contrast, DS is studied in terms of the Adam-Gibbs model by obtaining the configurational entropy (Sconf) and the specific heat contributions (CP,conf). We find that, for the HE, all of the studied quantities behave differently. For water-glycerol, the HB interaction is dominant for all conditions; water-methanol, two different T-regions above and below 265 K are observable, dominated by hydrophobicity and hydrophilicity, respectively. Below this temperature, where the LDL phase and the HB network develops and grows, with the times and CP,conf change behaviors leading to maxima and minima. Above it, the HB becomes weak and less stable, the HDL dominates, and hydrophobicity determines the solution.


Assuntos
Entropia , Interações Hidrofóbicas e Hidrofílicas , Termodinâmica , Água/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Soluções , Temperatura
8.
Appl Environ Microbiol ; 87(19): e0081921, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288706

RESUMO

Arylamines constitute a large group of industrial chemicals detoxified by certain bacteria through conjugation reactions catalyzed by N-acetyltransferase (NAT) enzymes. NAT homologs, mostly from pathogenic bacteria, have been the subject of individual studies that do not lend themselves to direct comparisons. By implementing a practicable pipeline, we carried out a comparative investigation of 15 NAT homologs from 10 bacteria, mainly bacilli, streptomycetes, and one alphaproteobacterium. The new homologs were characterized for their sequence, phylogeny, predicted structural features, substrate specificity, thermal stability, and interaction with components of the enzymatic reaction. Bacillus NATs demonstrated the characteristics of xenobiotic metabolizing N-acetyltransferases, with the majority of homologs generating high activities. Nonpathogenic bacilli are thus proposed as suitable mediators of arylamine bioremediation. Of the Streptomyces homologs, the NAT2 isoenzyme of S. venezuelae efficiently transformed highly toxic arylamines, while the remaining homologs were inactive or generated low activities, suggesting that xenobiotic metabolism may not be their primary role. The functional divergence of Streptomyces NATs was consistent with their observed sequence, phylogenetic, and structural variability. These and previous findings support classification of microbial NATs into three groups. The first includes xenobiotic metabolizing enzymes with dual acetyl/propionyl coenzyme A (CoA) selectivity. Homologs of the second group are more rarely encountered, acting as malonyltransferases mediating specialized ecological interactions. Homologs of the third group effectively lack acyltransferase activity, and their study may represent an interesting research area. Comparative NAT enzyme screens from a broad microbial spectrum may guide rational selection of homologs likely to share similar biological functions, allowing their combined investigation and use in biotechnological applications. IMPORTANCE Arylamines are encountered as industrial chemicals or by-products of agrochemicals that may constitute highly toxic contaminants of soils and groundwaters. Although such chemicals may be recalcitrant to biotransformation, they can be enzymatically converted into less toxic forms by some bacteria. Therefore, exploitation of the arylamine detoxification capabilities of microorganisms is investigated as an effective approach for bioremediation. Among microbial biotransformations of arylamines, enzymatic conjugation reactions have been reported, including NAT-mediated N-acetylation. Comparative investigations of NAT enzymes across a range of microorganisms can be laborious and expensive, so here we present a streamlined methodology for implementing such work. We compared 15 NAT homologs from nonpathogenic, free-living bacteria of potential biotechnological utility, mainly Terrabacteria, which are known for their rich secondary and xenobiotic metabolism. The analysis allowed insights into the evolutionary and functional divergence of bacterial NAT homologs, combined with assessment of their fundamental structural and enzymatic differences and similarities.


Assuntos
Acetiltransferases , Proteínas de Bactérias , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Xenobióticos/metabolismo
9.
Biochem Pharmacol ; 188: 114545, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831395

RESUMO

Human NAT2 is a polymorphic pharmacogene encoding for N-acetyltransferase 2, a hepatic enzyme active towards arylamine and arylhydrazine drugs, including the anti-tubercular antibiotic isoniazid. The isoenzyme also modulates susceptibility to chemical carcinogenesis, particularly of the bladder. Human NAT2 represents an ideal model for anthropological investigations into the demographic adaptation of worldwide populations to their xenobiotic environment. Its sequence appears to be subject to positive selection pressures that are population-specific and may be attributed to gene-environment interactions directly associated with exogenous chemical challenges. However, recent evidence suggests that the same evolutionary pattern may not be observed in other primates. Here, we report NAT2 polymorphism in 25 rhesus macaques (Macaca mulatta) and compare the frequencies and functional characteristics of 12 variants. Seven non-synonymous single nucleotide variations (SNVs) were identified, including one nonsense mutation. The missense SNVs were demonstrated to affect enzymatic function in a substrate-dependent manner, albeit more moderately than certain NAT1 SNVs recently characterised in the same cohort. Haplotypic and functional variability of NAT2 was comparable to that previously observed for NAT1 in the same population sample, suggesting that the two paralogues may have evolved under similar selective pressures in the rhesus macaque. This is different to the population variability distribution pattern reported for humans and chimpanzees. Recorded SNVs were also different from those found in other primates. The study contributes to further understanding of NAT2 functional polymorphism in the rhesus macaque, a non-human primate model used in biomedicine and pharmacology, indicating variability in xenobiotic acetylation that could affect drug metabolism.


Assuntos
Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Variação Genética/fisiologia , Polimorfismo Genético/fisiologia , Sequência de Aminoácidos , Animais , Antituberculosos/farmacologia , Arilamina N-Acetiltransferase/química , Variação Genética/efeitos dos fármacos , Humanos , Isoniazida/farmacologia , Macaca mulatta , Polimorfismo Genético/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375617

RESUMO

Molecular mechanisms for N2 fixation (solar NH3) and CO2 conversion to C2+ products in enzymatic conversion (nitrogenase), electrocatalysis, metal complexes and plasma catalysis are analyzed and compared. It is evidenced that differently from what is present in thermal and plasma catalysis, the electrocatalytic path requires not only the direct coordination and hydrogenation of undissociated N2 molecules, but it is necessary to realize features present in the nitrogenase mechanism. There is the need for (i) a multi-electron and -proton simultaneous transfer, not as sequential steps, (ii) forming bridging metal hydride species, (iii) generating intermediates stabilized by bridging multiple metal atoms and (iv) the capability of the same sites to be effective both in N2 fixation and in COx reduction to C2+ products. Only iron oxide/hydroxide stabilized at defective sites of nanocarbons was found to have these features. This comparison of the molecular mechanisms in solar NH3 production and CO2 reduction is proposed to be a source of inspiration to develop the next generation electrocatalysts to address the challenging transition to future sustainable energy and chemistry beyond fossil fuels.


Assuntos
Amônia/química , Dióxido de Carbono/química , Nitrogênio/química , Sistema Solar , Amônia/síntese química , Catálise , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Nitrogenase/química , Nitrogenase/metabolismo , Oxirredução , Gases em Plasma
11.
Sci Total Environ ; 645: 817-826, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031339

RESUMO

Bisphenol A (BPA)-free epoxy resins, synthesized from low molecular weight cycloaliphatic compounds, may represents promising materials for stone conservation due to their very appealing and tunable physico-chemical properties, such as viscosity, curing rate and penetration ability, being also easy to apply and handle. Furthermore, alkoxysilanes have been widely employed as inorganic strengtheners since they are easily hydrolysed inside lithic substrates affording SiO linkages with the stone matrix. Taking into account the advantages of these two classes of materials, this work has been focused on the development of innovative conservation materials, based on hybrid epoxy-silica BPA-free resins obtained by reaction of 1,4-cycloexanedimethanol diglycidylether (CHDM-DGE) with various siloxane precursors, i.e. glycidoxypropylmethyldiethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and isobutyltrimethoxysilane (iBuTMS), using the 1,8-diaminooctane (DAO) as epoxy hardener. Thanks to Raman spectroscopy the synthesis processes have been successfully monitored, allowing the identification of oxirane rings opening as well as the formation of the cross-linked organic-inorganic networks. In accordance with the spectroscopic data, the thermal studies carried out by TGA and DSC techniques have pointed that GPTMS is a suitable siloxane precursor to synthesize the most stable samples against temperature degradation. GPTMS-containing resins have also shown good performances in the dynamic mechanical analysis (DMA) and in contact angle investigations, with values indicating considerable hydrophobic properties. SEM analyses have highlighted a great homogeneity over the entire observed areas, without formations of clusters and/or aggregates bigger than 45 µm, for the cited materials, confirming the efficiency of GPTMS as coupling agent to enhance the organic/inorganic interphase bonding. The variations provided by the incorporation of nanostructured titania, specifically synthesized, inside the epoxy-silica hybrids have been also evaluated. According to all the collected results, the hybrid materials here reported have proven to be promising multifunctional products for potential application in the field of stone conservation.

12.
Chemistry ; 20(6): 1658-68, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24402826

RESUMO

A small library of polytopic receptors has been synthesized from meso-p- and meso-m-aminophenylcalix[4]pyrroles and p- or m-phthaloyl or trimesic chloride. Selected bis-carboxylates and the citrate anion, which either exhibit altered distribution profiles in cancerous tissues in comparison with healthy tissues or are metabolites of carcinogenic substances (for example, trans,trans-muconic acid from benzene exposure in humans) were tested as ligands. Varied affinities and binding modes were observed as a function of the number of calix[4]pyrroles and the topology of amide units present in each of the polytopic receptors. The structures of the 1:1 complexes derived by molecular modeling are in excellent agreement with the results of (1)H NMR complexation studies.


Assuntos
Amidas/química , Calixarenos/química , Ácidos Carboxílicos/química , Ácido Cítrico/química , Porfirinas/química , Ligação de Hidrogênio , Modelos Moleculares
13.
J Am Chem Soc ; 135(7): 2544-51, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23350677

RESUMO

A meso-p-nitroaniline-calix[4]pyrrole derivative trans-coordinated to a Pt(II) center was synthesized and its structure solved by X-ray analysis. Adenosine monophosphate (AMP) was used as a model compound to evaluate the potential for the assisted delivery of the metal to the DNA nucleobases via the phosphate anion-binding properties of the calix[4]pyrrole unit. An NMR investigation of the kinetics of AMP complexation in the absence of an H-bonding competing solvent (dry CD(3)CN) was consistent with this hypothesis, but we could not detect the interaction of the calix[4]pyrrole with phosphate in the presence of water. However, in vitro tests of the new trans-calixpyrrole-Pt(II) complex on different cancer cell lines indicate a cytotoxic activity that is unquestionably derived from the coexistence of both the trans-Pt(II) fragment and the calix[4]pyrrole unit.


Assuntos
Antineoplásicos/síntese química , Calixarenos/química , Complexos de Coordenação/síntese química , Platina/química , Pirróis/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA