Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(41): 8723-8733, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816160

RESUMO

The Cotton-Mouton effect is theoretically investigated for a selected set of molecules by using a novel computational methodology based on algebraic diagrammatic construction (ADC) schemes in the intermediate state representation (ISR) formulation. Therefore, the electronic contributions to the frequency-dependent polarizabilities and, for the first time, to the magnetizabilities as well as mixed electric and magnetic hypermagnetizabilities have been computed in the ADC/ISR framework. In addition to calculation of the Cotton-Mouton constant and the birefringence, the gauge origin dependence of the computed tensors and the applied methodology are thoroughly investigated. The new ADC/ISR methodology, employing the recently presented responsefun package, is applied to a test set of Ne and small molecules (H2, HF, O2, CO2, and benzene) and compared to data from the experiment as well as other ab initio methods. The presented theoretical ab initio ADC/ISR approach is a substantial extension of the available computational methods for the investigation of complex nonlinear properties, however, with a gauge origin dependence inherent to the method that decreases with increasing perturbation order.

2.
J Chem Theory Comput ; 19(18): 6375-6391, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676497

RESUMO

We present the open-source responsefun package, which implements a universally applicable procedure for computing molecular response properties within the algebraic diagrammatic construction (ADC) framework, exploiting the intermediate state representation (ISR) approach. With symbolic mathematics, the user can simply enter textbook sum-over-states (SOS) expressions from time-dependent perturbation theory, which are then automatically translated into the corresponding symbolic ADC/ISR formulations. Using the data structures provided by the hybrid Python/C++ module adcc for calculating excited states with ADC, the specified response property is directly evaluated, and the result is returned to the user. Employing the novel responsefun package, we present the first ADC/ISR calculations of second-order hyperpolarizability tensors and three-photon-absorption matrix elements.

3.
J Phys Chem A ; 127(32): 6635-6646, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37498297

RESUMO

Algebraic diagrammatic construction (ADC) schemes represent a family of ab initio methods for the calculation of excited electronic states and electron-detached and -attached states. All ADC methods have been demonstrated to possess great potential for molecular applications, e.g., for the calculation of absorption or photoelectron spectra or electron attachment processes. ADC originates from Green's function or propagator theory; however, most recent ADC developments heavily rely on the intermediate state representation or effective Liouvillian formalisms, which comprise new ADC methods and computational schemes for high-order properties. The different approaches for the calculation of excitation energies, ionization potentials, and electron affinities are intimately related, and they provide a coherent description of these quantities at equivalent levels of theory and with comparable errors. Most quantum chemical program packages contain ADC methods; however, the most complete ADC suite of methods can be found in the recent release of Q-Chem.

4.
J Chem Phys ; 158(8): 084105, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859074

RESUMO

We present an implementation for the calculation of molecular response properties using the algebraic-diagrammatic construction (ADC)/intermediate state representation approach. For the second-order ADC model [ADC(2)], a memory-efficient ansatz avoiding the storage of double excitation amplitudes is investigated. We compare the performance of different numerical algorithms for the solution of the underlying response equations for ADC(2) and show that our approach also strongly improves the convergence behavior for the investigated algorithms compared with the standard implementation. All routines are implemented in an open-source Python library.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA