Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1130939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926689

RESUMO

Biosorption of metal ions by phototrophic microorganisms is regarded as a sustainable and alternative method for bioremediation and metal recovery. In this study, 12 cyanobacterial strains, including 7 terrestrial and 5 aquatic cyanobacteria, covering a broad phylogenetic diversity were investigated for their potential application in the enrichment of rare earth elements through biosorption. A screening for the maximum adsorption capacity of cerium, neodymium, terbium, and lanthanum was conducted in which Nostoc sp. 20.02 showed the highest adsorption capacity with 84.2-91.5 mg g-1. Additionally, Synechococcus elongatus UTEX 2973, Calothrix brevissima SAG 34.79, Desmonostoc muscorum 90.03, and Komarekiella sp. 89.12 were promising candidate strains, with maximum adsorption capacities of 69.5-83.4 mg g-1, 68.6-83.5 mg g-1, 44.7-70.6 mg g-1, and 47.2-67.1 mg g-1 respectively. Experiments with cerium on adsorption properties of the five highest metal adsorbing strains displayed fast adsorption kinetics and a strong influence of the pH value on metal uptake, with an optimum at pH 5 to 6. Studies on binding specificity with mixed-metal solutions strongly indicated an ion-exchange mechanism in which Na+, K+, Mg2+, and Ca2+ ions are replaced by other metal cations during the biosorption process. Depending on the cyanobacterial strain, FT-IR analysis indicated the involvement different functional groups like hydroxyl and carboxyl groups during the adsorption process. Overall, the application of cyanobacteria as biosorbent in bioremediation and recovery of rare earth elements is a promising method for the development of an industrial process and has to be further optimized and adjusted regarding metal-containing wastewater and adsorption efficiency by cyanobacterial biomass.

2.
Front Bioeng Biotechnol ; 11: 1299349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173874

RESUMO

The transformation of modern industries towards enhanced sustainability is facilitated by green technologies that rely extensively on rare earth elements (REEs) such as cerium (Ce), neodymium (Nd), terbium (Tb), and lanthanum (La). The occurrence of productive mining sites, e.g., is limited, and production is often costly and environmentally harmful. As a consequence of increased utilization, REEs enter our ecosystem as industrial process water or wastewater and become highly diluted. Once diluted, they can hardly be recovered by conventional techniques, but using cyanobacterial biomass in a biosorption-based process is a promising eco-friendly approach. Cyanobacteria can produce extracellular polymeric substances (EPS) that show high affinity to metal cations. However, the adsorption of REEs by EPS has not been part of extensive research. Thus, we evaluated the role of EPS in the biosorption of Ce, Nd, Tb, and La for three terrestrial, heterocystous cyanobacterial strains. We cultivated them under N-limited and non-limited conditions and extracted their EPS for compositional analyses. Subsequently, we investigated the metal uptake of a) the extracted EPS, b) the biomass extracted from EPS, and c) the intact biomass with EPS by comparing the amount of sorbed REEs. Maximum adsorption capacities for the tested REEs of extracted EPS were 123.9-138.2 mg g-1 for Komarekiella sp. 89.12, 133.1-137.4 mg g-1 for Desmonostoc muscorum 90.03, and 103.5-129.3 mg g-1 for Nostoc sp. 20.02. A comparison of extracted biomass with intact biomass showed that 16% (Komarekiella sp. 89.12), 28% (Desmonostoc muscorum 90.03), and 41% (Nostoc sp. 20.02) of REE adsorption was due to the biosorption of the extracellular EPS. The glucose- rich EPS (15%-43% relative concentration) of all three strains grown under nitrogen-limited conditions showed significantly higher biosorption rates for all REEs. We also found a significantly higher maximum adsorption capacity of all REEs for the extracted EPS compared to cells without EPS and untreated biomass, highlighting the important role of the EPS as a binding site for REEs in the biosorption process. EPS from cyanobacteria could thus be used as efficient biosorbents in future applications for REE recycling, e.g., industrial process water and wastewater streams.

3.
Front Bioeng Biotechnol ; 10: 885977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573232

RESUMO

In analogy to higher plants, eukaryotic microalgae are thought to be incapable of utilizing green light for growth, due to the "green gap" in the absorbance profiles of their photosynthetic pigments. This study demonstrates, that the marine chlorophyte Picochlorum sp. is able to grow efficiently under green light emitting diode (LED) illumination. Picochlorum sp. growth and pigment profiles under blue, red, green and white LED illumination (light intensity: 50-200 µmol m-2 s-1) in bottom-lightened shake flask cultures were evaluated. Green light-treated cultures showed a prolonged initial growth lag phase of one to 2 days, which was subsequently compensated to obtain comparable biomass yields to red and white light controls (approx. 0.8 gDW L-1). Interestingly, growth and final biomass yields of the green light-treated sample were higher than under blue light with equivalent illumination energies. Further, pigment analysis indicated, that during green light illumination, Picochlorum sp. formed unknown pigments (X1-X4). Pigment concentrations increased with illumination intensity and were most abundant during the exponential growth phase. Mass spectrometry and nuclear magnetic resonance data indicated, that pigments X1-X2 and X3-X4 are derivatives of chlorophyll b and a, which harbor C=C bonds in the phytol side chain similar to geranylgeranylated chlorophylls. Thus, for the first time, the natural accumulation of large pools (approx. 12 mg gDW -1) of chlorophyll intermediates with incomplete hydrogenation of their phytyl chains is demonstrated for algae under monochromatic green light (Peak λ 510 nm, full width at half maximum 91 nm). The ability to utilize green light offers competitive advantages for enhancing biomass production, particularly under conditions of dense cultures, long light pathways and high light intensity. Green light acclimation for an eukaryotic microalgae in conjunction with the formation of new aberrant geranylgeranylated chlorophylls and high efficiency of growth rates are novel for eukaryotic microalgae. Illumination with green light could enhance productivity in industrial processes and trigger the formation of new metabolites-thus, underlying mechanisms require further investigation.

4.
Front Bioeng Biotechnol ; 10: 833122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223796

RESUMO

In this study water soluble compounds that form complexes with Rare Earth Elements (REE) and other metals were isolated from Calothrix brevissima biomass with chromatographic methods for the first time. Molecular characterization showed that the isolated compounds are most likely polysaccharides comprised of arabinose, xylose, mannose, galactose and glucose. FT-IR analysis revealed functional groups involved in the binding mechanism of Tb are likely sulfate- and to a lesser extend hydroxyl-groups. The binding specificity of the isolated compounds was investigated with different metal solutions. Here, ions of the alkali and alkaline earth metals Na, K, Mg and Ca showed no competition for Tb-binding even at 10-fold excess concentration. Ions of the elements Co and Pb on the other hand replaced Tb at higher concentrations. Addition of the isolated compounds significantly reduced the precipitation of Eu at pH-values between 6.7 and 9.5, indicating that the interaction between the isolated chelators and Rare Earth Metals is stable even at high pH-values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA