Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Front Microbiol ; 15: 1395815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774507

RESUMO

Introduction: The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains has underscored the urgent need for novel therapeutic approaches. Carbon-based nanomaterials, such as graphene oxide (GO), have shown potential in anti-TB activities but suffer from significant toxicity issues. Methods: This study explores the anti-TB potential of differently functionalized graphene quantum dots (GQDs) - non-functionalized, L-GQDs, aminated (NH2-GQDs), and carboxylated (COOH-GQDs) - alone and in combination with standard TB drugs (isoniazid, amikacin, and linezolid). Their effects were assessed in both axenic cultures and in vitro infection models. Results: GQDs alone did not demonstrate direct mycobactericidal effects nor trapping activity. However, the combination of NH2-GQDs with amikacin significantly reduced CFUs in in vitro models. NH2-GQDs and COOH-GQDs also enhanced the antimicrobial activity of amikacin in infected macrophages, although L-GQDs and COOH-GQDs alone showed no significant activity. Discussion: The results suggest that specific types of GQDs, particularly NH2-GQDs, can enhance the efficacy of existing anti-TB drugs. These nanoparticles might serve as effective adjuvants in anti-TB therapy by boosting drug performance and reducing bacterial counts in host cells, highlighting their potential as part of advanced drug delivery systems in tuberculosis treatment. Further investigations are needed to better understand their mechanisms and optimize their use in clinical settings.

2.
Obes Surg ; 34(5): 1496-1504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451369

RESUMO

OBJECTIVE: Endoscopic sleeve gastroplasty (ESG) is a minimally invasive procedure that proved to be safe and effective in obesity treatment. However, not all subjects respond to treatment in the same way, and, with a view to personalized care, it is essential to identify predictors of success or failure. METHODS: A retrospective 2-year followed-up cohort of ESG subjects was analyzed to investigate the presence of any baseline or early indicators of long-term optimal or suboptimal ESG outcomes. RESULTS: A total of 315 subjects (73% women) were included, with 73% of patients exhibiting an Excess weight loss percentage (%EWL) >25% at the 24 months. Neither demographic parameters (age and sex), smoking habits, and menopause in women nor the presence of comorbidities proved potential predictive value. Interestingly, the %EWL at 1 month after ESG was the strongest predictor of 24-month therapeutic success. Subsequently, we estimated an "early threshold for success" for 1 month-%EWL by employing Youden's index method. CONCLUSIONS: ESG is a safe and effective bariatric treatment that can be offered to a wide range of subjects. Early weight loss seems to impact long-term ESG results significantly and may allow proper early post-operative care optimization.


Assuntos
Gastroplastia , Obesidade Mórbida , Humanos , Feminino , Masculino , Gastroplastia/métodos , Obesidade/cirurgia , Obesidade Mórbida/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Redução de Peso
3.
Mater Today Bio ; 25: 100986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375317

RESUMO

Surgically addressing tumors poses a challenge, requiring a tailored, multidisciplinary approach for each patient based on the unique aspects of their case. Innovative therapeutic regimens combined to reliable reconstructive methods can contribute to an extended patient's life expectancy. This study presents a detailed comparative investigation of near-infrared therapy protocols, examining the impact of non-fractionated and fractionated irradiation regimens on cancer treatment. The therapy is based on the implantation of graphene oxide/poly(lactic-co-glycolic acid) three-dimensional printed scaffolds, exploring their versatile applications in oncology by the examination of pro-inflammatory cytokine secretion, immune response, and in vitro and in vivo tumor therapy. The investigation into cell death patterns (apoptosis vs necrosis) underlines the pivotal role of protocol selection underscores the critical influence of treatment duration on cell fate, establishing a crucial parameter in therapeutic decision-making. In vivo experiments corroborated the profound impact of protocol selection on tumor response. The fractionated regimen emerged as the standout performer, achieving a substantial reduction in tumor size over time, surpassing the efficacy of the non-fractionated approach. Additionally, the fractionated regimen exhibited efficacy also in targeting tumors in proximity but not in direct contact to the scaffolds. Our results address a critical gap in current research, highlighting the absence of a standardized protocol for optimizing the outcome of photodynamic therapy. The findings underscore the importance of personalized treatment strategies in achieving optimal therapeutic efficacy for precision cancer therapy.

4.
Polymers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257002

RESUMO

The effectiveness of clear aligners in correcting malocclusions is closely linked to the properties of the materials used to make them. The polymers used in the manufacture of clear aligners have well-established properties. However, the process of manufacturing clear aligners, known as thermoforming, involves thermal and mechanical shocks that may alter these properties. The objective of this study was to evaluate the effects of thermoforming on the mechanical, optical, chemical, and morphological properties of sixty PET-G specimens. The study compared the thickness, weight, absorbance, chemical structure, surface roughness, elastic modulus, yield strength, and breaking load of thirty thermoformed specimens with thirty non-thermoformed specimens. The study introduces a new approach by using standardized samples to analyze both chemical and physical properties. The results showed statistically significant differences in thickness (-15%), weight (-11%), and surface roughness (+1233% in roughness average; +1129% in RMS roughness) of the material. Additionally, a correlation was found between reduction in thickness and increase in opalescence. There was no significant change in the functionality of the aligners after thermoforming, as no significant mechanical changes were found. However, the increase in surface roughness may lead to plaque and fluid accumulation and worsen the fit of the aligners.

5.
Nanoscale ; 15(44): 17972-17986, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905731

RESUMO

The intriguing capability of branched glycoprotein filaments to change their hierarchical organization, mediated by external biophysical stimuli, continues to expand understanding of self-assembling strategies that can dynamically rearrange networks at long range. Previous research has explored the corresponding biological, physiological and genetic mechanisms, focusing on protein assemblies within a limited range of nanometric units. Using direct microscopy bio-imaging, we have determined the morpho-structural changes of self-assembled filament networks of the zona pellucida, revealing controlled levels of structured organizations to join distinct evolved stages of the oocyte (Immature, Mature, and Fertilized). This natural soft network reorganizes its corresponding hierarchical network to generate symmetric, asymmetric, and ultimately a state with the lowest asymmetry of the outer surface roughness, and internal pores reversibly changed from elliptical to circular configurations at the corresponding stages. These elusive morpho-structural changes are regulated by the nanostructured polymorphisms of the branched filaments by self-extension/-contraction/-bending processes, modulated by determinate theoretical angles among repetitive filament units. Controlling the nanoscale self-assembling properties by delivering a minimum number of activation bio-signals may be triggered by these specific nanostructured polymorphic organizations. Finally, this research aims to guide this soft biomaterial into a desired state to protect oocytes, eggs, and embryos during development, to favour/prevent the fertilization/polyspermy processes and eventually to impact interactions with bacteria/virus at multiscale levels.


Assuntos
Oócitos , Zona Pelúcida , Oócitos/metabolismo , Zona Pelúcida/metabolismo , Fertilização , Citoesqueleto , Glicoproteínas
6.
Nat Commun ; 14(1): 4662, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537177

RESUMO

Extreme waves are intense and unexpected wavepackets ubiquitous in complex systems. In optics, these rogue waves are promising as robust and noise-resistant beams for probing and manipulating the underlying material. Localizing large optical power is crucial especially in biomedical systems, where, however, extremely intense beams have not yet been observed. We here discover that tumor-cell spheroids manifest optical rogue waves when illuminated by randomly modulated laser beams. The intensity of light transmitted through bio-printed three-dimensional tumor models follows a signature Weibull statistical distribution, where extreme events correspond to spatially-localized optical modes propagating within the cell network. Experiments varying the input beam power and size indicate that the rogue waves have a nonlinear origin. We show that these nonlinear optical filaments form high-transmission channels with enhanced transmission. They deliver large optical power through the tumor spheroid, and can be exploited to achieve a local temperature increase controlled by the input wave shape. Our findings shed light on optical propagation in biological aggregates and demonstrate how nonlinear extreme event formation allows light concentration in deep tissues, paving the way to using rogue waves in biomedical applications, such as light-activated therapies.


Assuntos
Modelos Teóricos , Óptica e Fotônica
7.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259419

RESUMO

Candida parapsilosis is the major non-C. albicans species involved in the colonization of central venous catheters, causing bloodstream infections. Biofilm formation on medical devices is considered one of the main causes of healthcare-associated infections and represents a global public health problem. In this context, the development of new nanomaterials that exhibit anti-adhesive and anti-biofilm properties for the coating of medical devices is crucial. In this work, we aimed to characterize the antimicrobial activity of two different coated-surfaces, graphene oxide (GO) and curcumin-graphene oxide (GO/CU) for the first time, against C. parapsilosis. We report the capacity of GO to bind and stabilize CU molecules, realizing a homogenous coated surface. We tested the anti-planktonic activity of GO and GO/CU by growth curve analysis and quantification of Reactive Oxigen Species( ROS) production. Then, we tested the antibiofilm activity by adhesion assay, crystal violet assay, and live and dead assay; moreover, the inhibition of the formation of a mature biofilm was investigated by a viability test and the use of specific dyes for the visualization of the cells and the extra-polymeric substances. Our data report that GO/CU has anti-planktonic, anti-adhesive, and anti-biofilm properties, showing a 72% cell viability reduction and a decrease of 85% in the secretion of extra-cellular substances (EPS) after 72 h of incubation. In conclusion, we show that the GO/CU conjugate is a promising material for the development of medical devices that are refractory to microbial colonization, thus leading to a decrease in the impact of biofilm-related infections.

8.
Carbon N Y ; 210: 118058, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37151958

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.

9.
Microorganisms ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985128

RESUMO

Graphene Oxide has been proposed as a potential adjuvant to develop improved anti-TB treatment, thanks to its activity in entrapping mycobacteria in the extracellular compartment limiting their entry in macrophages. Indeed, when administered together with linezolid, Graphene Oxide significantly enhanced bacterial killing due to the increased production of Reactive Oxygen Species. In this work, we evaluated Graphene Oxide toxicity and its anti-mycobacterial activity on human peripheral blood mononuclear cells. Our data show that Graphene Oxide, different to what is observed in macrophages, does not support the clearance of Mycobacterium tuberculosis in human immune primary cells, probably due to the toxic effects of the nano-material on monocytes and CD4+ lymphocytes, which we measured by cytometry. These findings highlight the need to test GO and other carbon-based nanomaterials in relevant in vitro models to assess the cytotoxic activity while measuring antimicrobial potential.

10.
J Nanobiotechnology ; 20(1): 530, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514065

RESUMO

BACKGROUND: Extracellular Vesicles (EVs) are sub-micrometer lipid-bound particles released by most cell types. They are considered a promising source of cancer biomarkers for liquid biopsy and personalized medicine due to their specific molecular cargo, which provides biochemical information on the state of parent cells. Despite this potential, EVs translation process in the diagnostic practice is still at its birth, and the development of novel medical devices for their detection and characterization is highly required. RESULTS: In this study, we demonstrate mid-infrared plasmonic nanoantenna arrays designed to detect, in the liquid and dry phase, the specific vibrational absorption signal of EVs simultaneously with the unspecific refractive index sensing signal. For this purpose, EVs are immobilized on the gold nanoantenna surface by immunocapture, allowing us to select specific EV sub-populations and get rid of contaminants. A wet sample-handling technique relying on hydrophobicity contrast enables effortless reflectance measurements with a Fourier-transform infrared (FTIR) spectro-microscope in the wavelength range between 10 and 3 µm. In a proof-of-principle experiment carried out on EVs released from human colorectal adenocarcinoma (CRC) cells, the protein absorption bands (amide-I and amide-II between 5.9 and 6.4 µm) increase sharply within minutes when the EV solution is introduced in the fluidic chamber, indicating sensitivity to the EV proteins. A refractive index sensing curve is simultaneously provided by our sensor in the form of the redshift of a sharp spectral edge at wavelengths around 5 µm, where no vibrational absorption of organic molecules takes place: this permits to extract of the dynamics of EV capture by antibodies from the overall molecular layer deposition dynamics, which is typically measured by commercial surface plasmon resonance sensors. Additionally, the described metasurface is exploited to compare the spectral response of EVs derived from cancer cells with increasing invasiveness and metastatic potential, suggesting that the average secondary structure content in EVs can be correlated with cell malignancy. CONCLUSIONS: Thanks to the high protein sensitivity and the possibility to work with small sample volumes-two key features for ultrasensitive detection of extracellular vesicles- our lab-on-chip can positively impact the development of novel laboratory medicine methods for the molecular characterization of EVs.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Biópsia Líquida , Neoplasias/metabolismo , Técnicas de Cultura de Células , Proteínas/análise , Amidas/análise , Amidas/metabolismo
11.
Front Aging Neurosci ; 14: 932354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204549

RESUMO

Red blood cells (RBCs) are characterized by a remarkable elasticity, which allows them to undergo very large deformation when passing through small vessels and capillaries. This extreme deformability is altered in various clinical conditions, suggesting that the analysis of red blood cell (RBC) mechanics has potential applications in the search for non-invasive and cost-effective blood biomarkers. Here, we provide a comparative study of the mechanical response of RBCs in patients with Alzheimer's disease (AD) and healthy subjects. For this purpose, RBC viscoelastic response was investigated using atomic force microscopy (AFM) in the force spectroscopy mode. Two types of analyses were performed: (i) a conventional analysis of AFM force-distance (FD) curves, which allowed us to retrieve the apparent Young's modulus, E; and (ii) a more in-depth analysis of time-dependent relaxation curves in the framework of the standard linear solid (SLS) model, which allowed us to estimate cell viscosity and elasticity, independently. Our data demonstrate that, while conventional analysis of AFM FD curves fails in distinguishing the two groups, the mechanical parameters obtained with the SLS model show a very good classification ability. The diagnostic performance of mechanical parameters was assessed using receiving operator characteristic (ROC) curves, showing very large areas under the curves (AUC) for selected biomarkers (AUC > 0.9). Taken all together, the data presented here demonstrate that RBC mechanics are significantly altered in AD, also highlighting the key role played by viscous forces. These RBC abnormalities in AD, which include both a modified elasticity and viscosity, could be considered a potential source of plasmatic biomarkers in the field of liquid biopsy to be used in combination with more established indicators of the pathology.

12.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230585

RESUMO

The development of new tools for the early detection of pancreatic ductal adenocarcinoma (PDAC) represents an area of intense research. Recently, the concept has emerged that multiplexed detection of different signatures from a single biospecimen (e.g., saliva, blood, etc.) may exhibit better diagnostic capability than single biomarkers. In this work, we develop a multiplexed strategy for detecting PDAC by combining characterization of the nanoparticle (NP)-protein corona, i.e., the protein layer that surrounds NPs upon exposure to biological fluids and circulating levels of plasma proteins belonging to the acute phase protein (APPs) family. As a first step, we developed a nanoparticle-enabled blood (NEB) test that employed 600 nm graphene oxide (GO) nanosheets and human plasma (HP) (5% vol/vol) to produce 75 personalized protein coronas (25 from healthy subjects and 50 from PDAC patients). Isolation and characterization of protein corona patterns by 1-dimensional (1D) SDS-PAGE identified significant differences in the abundance of low-molecular-weight corona proteins (20-30 kDa) between healthy subjects and PDAC patients. Coupling the outcomes of the NEB test with the circulating levels of alpha 2 globulins, we detected PDAC with a global capacity of 83.3%. Notably, a version of the multiplexed detection strategy run on sex-disaggregated data provided substantially better classification accuracy for men (93.1% vs. 77.8%). Nanoliquid chromatography tandem mass spectrometry (nano-LC MS/MS) experiments allowed to correlate PDAC with an altered enrichment of Apolipoprotein A-I, Apolipoprotein D, Complement factor D, Alpha-1-antichymotrypsin and Alpha-1-antitrypsin in the personalized protein corona. Moreover, other significant changes in the protein corona of PDAC patients were found. Overall, the developed multiplexed strategy is a valid tool for PDAC detection and paves the way for the identification of new potential PDAC biomarkers.

13.
Biomed Pharmacother ; 153: 113496, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076510

RESUMO

Globally, breast cancer is the most diagnosed invasive cancer among women. Current therapies (e.g., chemotherapy) show numerous limitations due to the lack of selectivity and involved side effects, which urgently asks for novel approaches with enhanced tumor-killing efficacy. We previously demonstrated that MXenes, new bioactive nanomaterials with promising photophysical properties, are capable to increase the efficiency of the targeted breast cancer photothermal therapy (PTT). In this work, we investigated the effect of few- and multi-layer Ti3C2Tx MXenes mediated-PTT on two different 3D reliable breast cancer models such as conventional and bio-printed spheroids. We performed PTT on both cancer models using a non-toxic MXene concentration of 50 µg/mL. After PTT, a significant reduction in the cell viability along with a notable increase in reactive oxygen species (ROS) was observed. Moreover, we studied the effect of PTT on the migration of macrophages and endothelial cells toward cancer regions in both 3D models. Our results indicate that PTT mediated by both few- and multi-layer MXenes significantly modulates the tumor progression through cells' death by increasing the temperature, which holds particularly true for the bio-printed model.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Células Endoteliais/metabolismo , Feminino , Humanos , Terapia Fototérmica , Titânio
14.
Viruses ; 14(8)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-36016352

RESUMO

Coagulation factor Xa (fXa) and thrombin (thr) are widely expressed in pulmonary tissues, where they may catalyze, together with the transmembrane serine protease 2 (TMPRSS2), the coronaviruses spike protein (SP) cleavage and activation, thus enhancing the SP binding to ACE2 and cell infection. In this study, we evaluate in vitro the ability of approved (i.e., dabigatran and rivaroxaban) and newly synthesized isonipecotamide-based reversible inhibitors of fXa/thr (cmpds 1-3) to hinder the SARS-CoV-2 infectivity of VERO cells. Nafamostat, which is a guanidine/amidine antithrombin and antiplasmin agent, disclosed as a covalent inhibitor of TMPRSS2, was also evaluated. While dabigatran and rivaroxaban at 100 µM concentration did not show any effect on SARS-CoV-2 infection, the virus preincubation with new guanidino-containing fXa-selective inhibitors 1 and 3 did decrease viral infectivity of VERO cells at subtoxic doses. When the cells were pre-incubated with 3, a reversible nanomolar inhibitor of fXa (Ki = 15 nM) showing the best in silico docking score toward TMPRSS2 (pdb 7MEQ), the SARS-CoV-2 infectivity was completely inhibited at 100 µM (p < 0.0001), where the cytopathic effect was just about 10%. The inhibitory effects of 3 on SARS-CoV-2 infection was evident (ca. 30%) at lower concentrations (3-50 µM). The covalent TMPRSS2 and the selective inhibitor nafamostat mesylate, although showing some effect (15-20% inhibition), did not achieve statistically significant activity against SARS-CoV-2 infection in the whole range of test concentrations (3-100 µM). These findings suggest that direct inhibitors of the main serine proteases of the blood coagulation cascade may have potential in SARS-CoV-2 drug discovery. Furthermore, they prove that basic amidino-containing fXa inhibitors with a higher docking score towards TMPRSS2 may be considered hits for optimizing novel small molecules protecting guest cells from SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Fatores de Coagulação Sanguínea , Chlorocebus aethiops , Dabigatrana , Humanos , Rivaroxabana , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Internalização do Vírus
15.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012749

RESUMO

In the last 20 years, bone regenerative research has experienced exponential growth thanks to the discovery of new nanomaterials and improved manufacturing technologies that have emerged in the biomedical field. This revolution demands standardization of methods employed for biomaterials characterization in order to achieve comparable, interoperable, and reproducible results. The exploited methods for characterization span from biophysics and biochemical techniques, including microscopy and spectroscopy, functional assays for biological properties, and molecular profiling. This review aims to provide scholars with a rapid handbook collecting multidisciplinary methods for bone substitute R&D and validation, getting sources from an up-to-date and comprehensive examination of the scientific landscape.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Materiais Biocompatíveis/química , Regeneração Óssea , Osso e Ossos , Ciência dos Materiais , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
16.
Obes Surg ; 32(10): 3390-3397, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35918595

RESUMO

PURPOSE: With the aging of the population and the epidemic spread of obesity, the frequency of older individuals with obesity is steadily growing. To date, no data evaluating the use of endoscopic sleeve gastroplasty (ESG) in the elderly have been published. In this case series, we evaluate the short- and medium-term outcomes of ESG in patients with obesity aged 65 years and older. MATERIALS AND METHODS: A retrospective analysis was done on a prospective database; patients aged 65 years and older were included in our analysis. EWL%, TBWL%, the Bariatric Analysis and Reporting Outcome System (BAROS) questionnaire, and the presence of comorbidities were assessed. RESULTS: Eighteen patients aged 65 years and older underwent ESG between November 2017 and July 2021. The median age was 67 years and the mean baseline BMI was 41.2 kg/m2. After ESG, the median TBWL% was 15.1%, 15.5%, and 15.5% at 6, 12, and 24 months, while the median %EWL was 39%, 37%, and 41% at 6, 12, and 24 months, respectively. The median BAROS score was 3.0, 3.4, and 2.5 at 6, 12, and 24 months, respectively. Six out of twelve patients with hypertension and 3/4 diabetic patients reduced or removed their medications within 12 months following ESG. Two out of six patients with OSA stopped therapy with CPAP. No adverse events were recorded. CONCLUSION: According to our experience, ESG is a promising therapeutic option for elder individuals with obesity who fail non-invasive methods, and who refuse or are deemed not suitable for bariatric surgery because of age and comorbidities.


Assuntos
Gastroplastia , Obesidade Mórbida , Idoso , Gastroplastia/métodos , Humanos , Obesidade/etiologia , Obesidade/cirurgia , Obesidade Mórbida/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Redução de Peso
17.
Nanomaterials (Basel) ; 12(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889600

RESUMO

Magnetic levitation (MagLev) has recently emerged as a powerful method to develop diagnostic technologies based on the exploitation of the nanoparticle (NP)-protein corona. However, experimental procedures improving the robustness, reproducibility, and accuracy of this technology are largely unexplored. To contribute to filling this gap, here, we investigated the effect of total flow rate (TFR) and flow rate ratio (FRR) on the MagLev patterns of microfluidic-generated graphene oxide (GO)-protein complexes using bulk mixing of GO and human plasma (HP) as a reference. Levitating and precipitating fractions of GO-HP samples were characterized in terms of atomic force microscopy (AFM), bicinchoninic acid assay (BCA), and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE), and nanoliquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). We identified combinations of TFR and FRR (e.g., TFR = 35 µL/min and FRR (GO:HP) = 9:1 or TFR = 3.5 µL/min and FRR (GO:HP) = 19:1), leading to MagLev patterns dominated by levitating and precipitating fractions with bulk-like features. Since a typical MagLev experiment for disease detection is based on a sequence of optimization, exploration, and validation steps, this implies that the optimization (e.g., searching for optimal NP:HP ratios) and exploration (e.g., searching for MagLev signatures) steps can be performed using samples generated by bulk mixing. When these steps are completed, the validation step, which involves using human specimens that are often available in limited amounts, can be made by highly reproducible microfluidic mixing without any ex novo optimization process. The relevance of developing diagnostic technologies based on MagLev of coronated nanomaterials is also discussed.

18.
J Pers Med ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743734

RESUMO

Extracellular vesicles (EVs) are abundantly released into the systemic circulation, where they show remarkable stability and harbor molecular constituents that provide biochemical information about their cells of origin. Due to this characteristic, EVs are attracting increasing attention as a source of circulating biomarkers for cancer liquid biopsy and personalized medicine. Despite this potential, none of the discovered biomarkers has entered the clinical practice so far, and novel approaches for the label-free characterization of EVs are highly demanded. In this regard, Fourier Transform Infrared Spectroscopy (FTIR) has great potential as it provides a quick, reproducible, and informative biomolecular fingerprint of EVs. In this pilot study, we investigated, for the first time in the literature, the capability of FTIR spectroscopy to distinguish between EVs extracted from sera of cancer patients and controls based on their mid-IR spectral response. For this purpose, EV-enriched suspensions were obtained from the serum of patients diagnosed with Hepatocellular Carcinoma (HCC) of nonviral origin and noncancer subjects. Our data point out the presence of statistically significant differences in the integrated intensities of major mid-IR absorption bands, including the carbohydrate and nucleic acids band, the protein amide I and II bands, and the lipid CH stretching band. Additionally, we used Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) for the automated classification of spectral data according to the shape of specific mid-IR spectral signatures. The diagnostic performances of the proposed spectral biomarkers, alone and combined, were evaluated using multivariate logistic regression followed by a Receiving Operator Curve analysis, obtaining large Areas Under the Curve (AUC = 0.91, 95% CI 0.81-1.0). Very interestingly, our analyses suggest that the discussed spectral biomarkers can outperform the classification ability of two widely used circulating HCC markers measured on the same groups of subjects, namely alpha-fetoprotein (AFP), and protein induced by the absence of vitamin K or antagonist-II (PIVKA-II).

19.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328638

RESUMO

Cancer spheroids are in vitro 3D models that became crucial in nanomaterials science thanks to the possibility of performing high throughput screening of nanoparticles and combined nanoparticle-drug therapies on in vitro models. However, most of the current spheroid analysis methods involve manual steps. This is a time-consuming process and is extremely liable to the variability of individual operators. For this reason, rapid, user-friendly, ready-to-use, high-throughput image analysis software is necessary. In this work, we report the INSIDIA 2.0 macro, which offers researchers high-throughput and high content quantitative analysis of in vitro 3D cancer cell spheroids and allows advanced parametrization of the expanding and invading cancer cellular mass. INSIDIA has been implemented to provide in-depth morphologic analysis and has been used for the analysis of the effect of graphene quantum dots photothermal therapy on glioblastoma (U87) and pancreatic cancer (PANC-1) spheroids. Thanks to INSIDIA 2.0 analysis, two types of effects have been observed: In U87 spheroids, death is accompanied by a decrease in area of the entire spheroid, with a decrease in entropy due to the generation of a high uniform density spheroid core. On the other hand, PANC-1 spheroids' death caused by nanoparticle photothermal disruption is accompanied with an overall increase in area and entropy due to the progressive loss of integrity and increase in variability of spheroid texture. We have summarized these effects in a quantitative parameter of spheroid disruption demonstrating that INSIDIA 2.0 multiparametric analysis can be used to quantify cell death in a non-invasive, fast, and high-throughput fashion.


Assuntos
Glioblastoma , Grafite , Neoplasias Pancreáticas , Pontos Quânticos , Linhagem Celular Tumoral , Glioblastoma/terapia , Humanos , Neoplasias Pancreáticas/terapia , Terapia Fototérmica , Esferoides Celulares , Neoplasias Pancreáticas
20.
Carbon N Y ; 194: 34-41, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35313599

RESUMO

Additive manufacturing has played a crucial role in the COVID-19 global emergency allowing for rapid production of medical devices, indispensable tools for hospitals, or personal protection equipment. However, medical devices, especially in nosocomial environments, represent high touch surfaces prone to viral infection and currently used filaments for 3D printing can't inhibit transmission of virus [1]. Graphene-family materials are capable of reinforcing mechanical, optical and thermal properties of 3D printed constructs. In particular, graphene can adsorb near-infrared light with high efficiency. Here we demonstrate that the addition of graphene nanoplatelets to PLA filaments (PLA-G) allows the creation of 3D-printed devices that can be sterilized by near-infrared light exposure at power density analog to sunlight. This method has been used to kill SARS-CoV-2 viral particles on the surface of 3D printed PLA-G by 3 min of exposure. 3D-printed PLA-G is highly biocompatible and can represent the ideal material for the production of sterilizable personal protective equipment and daily life objects intended for multiple users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA