Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942781

RESUMO

Global warming threatens the productivity of forest plantations. We propose here the integration of environmental information into a genomic evaluation scheme using individual reaction norms, to enable the quantification of resilience in forest tree improvement and conservation strategies in the coming decades. Random regression models were used to fit wood ring series, reflecting the longitudinal phenotypic plasticity of tree growth, according to various environmental gradients. The predictive ability of the models was considered to select the most relevant environmental gradient, namely a gradient derived from an ecophysiological model and combining trunk water potential and temperature. Even if the individual ranking was preserved over most of the environmental gradient, strong genotype x environment interactions were detected in the extreme unfavorable part of the gradient, which includes environmental conditions that are very likely to be more frequent in the future. Combining genomic information and longitudinal data allowed to predict the growth of individuals in environments where they have not been observed. Phenotyping of 50% of the individuals in all the environments studied allowed to predict the growth of the remaining 50% of individuals in all these environments with a predictive ability of 0.25. Without changing the total number of observations, adding observations in a reduced number of environments for the individuals to be predicted, while decreasing the number of individuals phenotyped in all environments, increased the predictive ability to 0.59, highlighting the importance of phenotypic data allocation. We found that genomic reaction norms are useful for the characterization and prediction of the function of genetic parameters and facilitate breeding in a climate change context.

2.
J Exp Bot ; 72(7): 2696-2709, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33462583

RESUMO

The increased susceptibility of ripe fruit to fungal pathogens poses a substantial threat to crop production and marketability. Here, we coupled transcriptomic analyses with mutant studies to uncover critical processes associated with defense and susceptibility in tomato (Solanum lycopersicum) fruit. Using unripe and ripe fruit inoculated with three fungal pathogens, we identified common pathogen responses reliant on chitinases, WRKY transcription factors, and reactive oxygen species detoxification. We established that the magnitude and diversity of defense responses do not significantly impact the interaction outcome, as susceptible ripe fruit mounted a strong immune response to pathogen infection. Then, to distinguish features of ripening that may be responsible for susceptibility, we utilized non-ripening tomato mutants that displayed different susceptibility patterns to fungal infection. Based on transcriptional and hormone profiling, susceptible tomato genotypes had losses in the maintenance of cellular redox homeostasis, while jasmonic acid accumulation and signaling coincided with defense activation in resistant fruit. We identified and validated a susceptibility factor, pectate lyase (PL). CRISPR-based knockouts of PL, but not polygalacturonase (PG2a), reduced susceptibility of ripe fruit by >50%. This study suggests that targeting specific genes that promote susceptibility is a viable strategy to improve the resistance of tomato fruit against fungal disease.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Solanum lycopersicum , Botrytis , Frutas/imunologia , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 10: 223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881367

RESUMO

Worldwide, 20-25% of all harvested fruit and vegetables are lost annually in the field and throughout the postharvest supply chain due to rotting by fungal pathogens. Most postharvest pathogens exhibit necrotrophic or saprotrophic lifestyles, resulting in decomposition of the host tissues and loss of marketable commodities. Necrotrophic fungi can readily infect ripe fruit leading to the rapid establishment of disease symptoms. However, these pathogens generally fail to infect unripe fruit or remain quiescent until host conditions stimulate a successful infection. Previous research on infections of fruit has mainly been focused on the host's genetic and physicochemical factors that inhibit or promote disease. Here, we investigated if fruit pathogens can modify their own infection strategies in response to the ripening stage of the host. To test this hypothesis, we profiled global gene expression of three fungal pathogens that display necrotrophic behavior-Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer-during interactions with unripe and ripe tomato fruit. We assembled and functionally annotated the transcriptomes of F. acuminatum and R. stolonifer as no genomic resources were available. Then, we conducted differential gene expression analysis to compare each pathogen during inoculations versus in vitro conditions. Through characterizing patterns of overrepresented pathogenicity and virulence functions (e.g., phytotoxin production, cell wall degradation, and proteolysis) among the differentially expressed genes, we were able to determine shared strategies among the three fungi during infections of compatible (ripe) and incompatible (unripe) fruit tissues. Though each pathogen's strategy differed in the details, interactions with unripe fruit were commonly characterized by an emphasis on the degradation of cell wall components, particularly pectin, while colonization of ripe fruit featured more heavily redox processes, proteolysis, metabolism of simple sugars, and chitin biosynthesis. Furthermore, we determined that the three fungi were unable to infect fruit from the non-ripening (nor) tomato mutant, confirming that to cause disease, these pathogens require the host tissues to undergo specific ripening processes. By enabling a better understanding of fungal necrotrophic infection strategies, we move closer to generating accurate models of fruit diseases and the development of early detection tools and effective management strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA