Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(17): 4208-4219, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38650054

RESUMO

While protic ionic liquids (ILs) have found great success as solvents for a broad range of applications, little is known about their degradation when exposed to temperatures above ambient for extended periods of time. Here, we report the thermal stability of six protic ILs, namely, ethylammonium nitrate, ethylammonium formate, ethylammonium acetate, ethanolammonium nitrate, ethanolammonium formate, and ethanolammonium acetate. The effect of heating each ionic liquid to 60 °C for 1 h or 1 week (sealed or open to the atmosphere) was evaluated by considering the changes to water content, pH, mass, thermal phase transitions, and molecular structure after each treatment. Heating each of the six ILs when sealed led to measurable shifts in their water content and 10 wt % pH, but there was no significant change in their mass, thermal phase transitions according to differential scanning calorimetry (DSC), or molecular structure using proton nuclear magnetic resonance (1H NMR) spectra, indicating that the samples were largely unchanged. The samples that were heated open to the atmosphere also displayed no significant changes after 1 h but displayed significant changes after 1 week.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189602

RESUMO

Monoolein-based liquid crystal phases are established media that are researched for various biological applications, including drug delivery. While water is the most common solvent for self-assembly, some ionic liquids (ILs) can support lipidic self-assembly. However, currently, there is limited knowledge of IL-lipid phase behavior in ILs. In this study, the lyotropic liquid crystal phase behavior of monoolein was investigated in six protic ILs known to support amphiphile self-assembly, namely ethylammonium nitrate, ethanolammonium nitrate, ethylammonium formate, ethanolammonium formate, ethylammonium acetate, and ethanolammonium acetate. These ILs were selected to identify specific ion effects on monoolein self-assembly, specifically increasing the alkyl chain length of the cation or anion, the presence of a hydroxyl group in the cation, and varying the anion. The lyotropic liquid crystal phases with 20-80 wt. % of monoolein were characterized over a temperature range from 25 to 65 °C using synchrotron small angle x-ray scattering and cross-polarized optical microscopy. These results were used to construct partial phase diagrams of monoolein in each of the six protic ILs, with inverse hexagonal, bicontinuous cubic, and lamellar phases observed. Protic ILs containing the ethylammonium cation led to monoolein forming lamellar and bicontinuous cubic phases, while those containing the ethanolammonium cation formed inverse hexagonal and bicontinuous cubic phases. Protic ILs containing formate and acetate anions favored bicontinuous cubic phases across a broader range of protic IL concentrations than those containing the nitrate anion.

3.
J Chem Phys ; 158(1): 014902, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610972

RESUMO

Lyotropic liquid crystal phases (LCPs) are widely studied for diverse applications, including protein crystallization and drug delivery. The structure and properties of LCPs vary widely depending on the composition, concentration, temperature, pH, and pressure. High-throughput structural characterization approaches, such as small-angle x-ray scattering (SAXS), are important to cover meaningfully large compositional spaces. However, high-throughput LCP phase analysis for SAXS data is currently lacking, particularly for patterns of multiphase mixtures. In this paper, we develop semi-automated software for high throughput LCP phase identification from SAXS data. We validate the accuracy and time-savings of this software on a total of 668 SAXS patterns for the LCPs of the amphiphile hexadecyltrimethylammonium bromide (CTAB) in 53 acidic or basic ionic liquid derived solvents, within a temperature range of 25-75 °C. The solvents were derived from stoichiometric ethylammonium nitrate (EAN) or ethanolammonium nitrate (EtAN) by adding water to vary the ionicity, and adding precursor ions of ethylamine, ethanolamine, and nitric acid to vary the pH. The thermal stability ranges and lattice parameters for CTAB-based LCPs obtained from the semi-automated analysis showed equivalent accuracy to manual analysis, the results of which were previously published. A time comparison of 40 CTAB systems demonstrated that the automated phase identification procedure was more than 20 times faster than manual analysis. Moreover, the high throughput identification procedure was also applied to 300 unpublished scattering patterns of sodium dodecyl-sulfate in the same EAN and EtAN based solvents in this study, to construct phase diagrams that exhibit phase transitions from micellar, to hexagonal, cubic, and lamellar LCPs. The accuracy and significantly low analysis time of the high throughput identification procedure validates a new, rapid, unrestricted analytical method for the determination of LCPs.


Assuntos
Cristais Líquidos , Água , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X , Cristais Líquidos/química , Cetrimônio , Solventes , Automação
4.
IUCrJ ; 9(Pt 2): 231-242, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35371507

RESUMO

Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis. Preferred orientation is regarded as a potential source of error in intensity-correlation experiments and complicates interpretation of the results. Here, the theory of preferred orientation in intensity-correlation techniques is developed, connecting it to the established theory of texture analysis. The preferred-orientation effect is found to scale with the number of crystalline domains in the beam, surpassing the nanostructural signal when the number of domains becomes large. Experimental demonstrations are presented of the orientation-dominant and nanostructure-dominant cases using PADF analysis. The results show that even minor deviations from uniform orientation produce the strongest angular correlation signals when the number of crystalline domains in the beam is large.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA