Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Future Microbiol ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36475828

RESUMO

Aims: Numerous beneficial effects of vitamin C (ascorbic acid) supplementation have been reported in the literature. However, data on its effects toward the gut microbiome are limited. We assessed the effect of vitamin C supplementation on the abundance of beneficial bacterial species in the gut microbiome. Materials and methods: Stool samples were analyzed for relative abundance of gut microbiome bacteria using next-generation sequencing-based profiling and metagenomic shotgun analysis. Results: Supplementation with vitamin C increased the abundance of bacteria of the genus Bifidobacterium (p = 0.0001) and affected various species. Conclusion: The beneficial effects of vitamin C supplementation may be attributed to modulation of the gut microbiome and the consequent health benefits thereof.


Vitamin C, also known as ascorbic acid, is used as a supplement for fighting infectious disorders. Many disorders, including COVID-19 and cancer, harmfully disrupt the levels of bacteria that naturally reside in the gut, which may contribute to symptoms. The aim of the study was to understand whether high-dose vitamin C could improve the types of bacteria in the human gut. To do this we characterized the gut bacteria before and after 23 individuals took vitamin C, as prescribed by their respective physicians. We observed that vitamin C increased levels of a gut bacterium called Bifidobacterium which has positive health benefits, including fighting infection. This study suggests the possibility that vitamin C could be successful for improving infection outcomes, possibly even COVID-19, partially because it improves the gut bacteria present.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35483736

RESUMO

OBJECTIVE: The study objective was to compare gut microbiome diversity and composition in SARS-CoV-2 PCR-positive patients whose symptoms ranged from asymptomatic to severe versus PCR-negative exposed controls. DESIGN: Using a cross-sectional design, we performed shotgun next-generation sequencing on stool samples to evaluate gut microbiome composition and diversity in both patients with SARS-CoV-2 PCR-confirmed infections, which had presented to Ventura Clinical Trials for care from March 2020 through October 2021 and SARS-CoV-2 PCR-negative exposed controls. Patients were classified as being asymptomatic or having mild, moderate or severe symptoms based on National Institute of Health criteria. Exposed controls were individuals with prolonged or repeated close contact with patients with SARS-CoV-2 infection or their samples, for example, household members of patients or frontline healthcare workers. Microbiome diversity and composition were compared between patients and exposed controls at all taxonomic levels. RESULTS: Compared with controls (n=20), severely symptomatic SARS-CoV-2-infected patients (n=28) had significantly less bacterial diversity (Shannon Index, p=0.0499; Simpson Index, p=0.0581), and positive patients overall had lower relative abundances of Bifidobacterium (p<0.0001), Faecalibacterium (p=0.0077) and Roseburium (p=0.0327), while having increased Bacteroides (p=0.0075). Interestingly, there was an inverse association between disease severity and abundance of the same bacteria. CONCLUSION: We hypothesise that low bacterial diversity and depletion of Bifidobacterium genera either before or after infection led to reduced proimmune function, thereby allowing SARS-CoV-2 infection to become symptomatic. This particular dysbiosis pattern may be a susceptibility marker for symptomatic severity from SARS-CoV-2 infection and may be amenable to preinfection, intrainfection or postinfection intervention. TRIAL REGISTRATION NUMBER: NCT04031469 (PCR-) and 04359836 (PCR+).


Assuntos
COVID-19 , Microbiota , Bifidobacterium/genética , Estudos Transversais , Faecalibacterium , Humanos , SARS-CoV-2
3.
Gastroenterology Res ; 14(5): 304-309, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34804275

RESUMO

BACKGROUND: The effectiveness of fecal microbiota transplantation (FMT), a treatment for Clostridioides difficile infection (CDI), is dependent on successful engraftment (incorporation) of donor stool. We present a method for evaluating engraftment success based on next-generation sequencing (NGS)-based profiling of bacterial strains present in donor and recipient stool, and we suggest its potential to guide treatment decisions. METHODS: Bacterial strains in stool samples from three patients from the clinic and one donor were analyzed via NGS and metagenomic sequencing, before and 1 month after FMT for CDI. The similarity of strains present was assessed via relative abundance, principal component analysis, Shannon and Simpson diversity indexes, and Bray-Curtis dissimilarity matrix. A positive outcome was successful engraftment, where the post-FMT sample closely resembled that of the donor and CDI was cured. RESULTS: Patients (Pts.) 1 and 2, but not Pt. 3's stool samples closely resembled the donor specimen post-FMT. Noteworthy, Pt. 3 pre-FMT sample was less similar to the donor than that of Pts. 1 and 2. All methods of assessing similarity and dissimilarity used yielded virtually identical conclusions. Pts. 1 and 2 which closely resembled donor specimen, eradicated CDI giving a surrogate objective measure of engraftment. CONCLUSIONS: Success of engraftment in FMT can be assessed using NGS and metagenomic analysis and parallels success in curing CDI of the microbiome. The statistical methods we present here are reliable and consistent for such purposes. The dissimilarity of Pt. 3 to the donor combined with the failure of engraftment and failure to cure CDI in Pt. 3 suggests that FMT success may be predictable by comparing pre-FMT samples to donor. There is no clinical trial registry listing this study.

4.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203196

RESUMO

Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at weaning and development of gut dysbiosis and colonic inflammation in adulthood. We used a C57BL/6J mouse model to compare the effects of exposure to a typical American Western diet (WD) providing 58.4%, 27.8%, and 13.7% energy (%E) from carbohydrates, fat, and protein, respectively, with those of an isocaloric and isoproteic soybean oil-rich n-6HFD providing 50%E and 35.9%E from total fat and carbohydrates, respectively on gut inflammation and microbiome profile. Methods: At weaning, male offspring were assigned to either the WD or n-6HFD through 10-16 weeks of age. The WD included fat exclusively from palm oil whereas the n-6HFD contained fat exclusively from soybean oil. We recorded changes in body weight, cyclooxygenase-2 (COX-2) expression, colon histopathology, and gut microbiome profile. Results: Compared to the WD, the n-6HFD increased plasma levels of n-6 fatty acids; colonic expression of COX-2; and the number of colonic inflammatory and hyperplastic lesions. At 16 weeks of age, the n-6HFD caused a marked reduction in the gut presence of Firmicutes, Clostridia, and Lachnospiraceae, and induced growth of Bacteroidetes and Deferribacteraceae. At the species level, the n-6HFD sustains the gut growth of proinflammatory Mucispirillum schaedleri and Lactobacillus murinus. Conclusions: An n-6HFD consumed from weaning to adulthood induces a shift in gut bacterial profile associated with colonic inflammation.


Assuntos
Colo/imunologia , Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose/etiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Western Blotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Curr Dev Nutr ; 1(6): e000562, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29955703

RESUMO

Background: Previous studies have suggested a causative role for agonists of the aromatic hydrocarbon receptor (AhR) in the etiology of breast cancer 1, early-onset (BRCA-1)-silenced breast tumors, for which prospects for treatment remain poor. Objectives: We investigated the regulation of BRCA1 by the soy isoflavone genistein (GEN) in human estrogen receptor α (ERα)-positive Michigan Cancer Foundation-7 (MCF-7) and ERα-negative sporadic University of Arizona Cell Culture-3199 (UACC-3199) breast cancer cells, respectively, with inducible and constitutively active AhR. Methods: In MCF-7 cells, we analyzed the dose- and time-dependent effects of GEN and (-)-epigallocatechin-3-gallate (EGCG) control, selected as prototype dietary DNA methyltransferase (DNMT) inhibitors, on BRCA-1 expression after AhR activation with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in TCDD-washout experiments. We compared the effects of GEN and EGCG on BRCA1 cytosine-phosphate-guanine (CpG) methylation and cell proliferation. Controls for DNA methylation and proliferation were changes in expression of DNMT-1, cyclin D1, and p53, respectively. In UACC-3199 cells, we compared the effects of GEN and α-naphthoflavone (αNF; 7,8-benzoflavone), a synthetic flavone and AhR antagonist, on BRCA1 expression and CpG methylation, cyclin D1, and cell growth. Finally, we examined the effects of GEN and αNF on BRCA1, AhR-inducible cytochrome P450 (CYP)-1A1 (CYP1A1) and CYP1B1, and AhR mRNA expression. Results: In MCF-7 cells, GEN exerted dose- and time-dependent preventative effects against TCDD-dependent downregulation of BRCA-1. After TCDD washout, GEN rescued BRCA-1 protein expression while reducing DNMT-1 and cyclin D1. GEN and EGCG reduced BRCA1 CpG methylation and cell proliferation associated with increased p53. In UACC-3199 cells, GEN reduced BRCA1 and estrogen receptor-1 (ESR1) CpG methylation, cyclin D1, and cell growth while inducing BRCA-1 and CYP1A1. Conclusions: Results suggest preventative effects for GEN and EGCG against BRCA1 CpG methylation and downregulation in ERα-positive breast cancer cells with activated AhR. GEN and flavone antagonists of AhR may be useful for reactivation of BRCA1 and ERα via CpG demethylation in ERα-negative breast cancer cells harboring constitutively active AhR.

6.
BMC Cancer ; 15: 1026, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26715507

RESUMO

BACKGROUND: Only 5-10% of breast cancer cases is linked to germline mutations in the BRCA-1 gene and occurs early in life. Conversely, sporadic breast tumors, which represent 90-95% of breast malignancies, have lower BRCA-1 expression, but not mutated BRCA-1 gene, and tend to occur later in life in combination with other genetic alterations and/or environmental exposures. The latter may include environmental and dietary factors that activate the aromatic hydrocarbon receptor (AhR). Therefore, understanding if changes in expression and/or activation of the AhR are associated with somatic inactivation of the BRCA-1 gene may provide clues for breast cancer therapy. METHODS: We evaluated Brca-1 CpG promoter methylation and expression in mammary tumors induced in Sprague-Dawley rats with the AhR agonist and mammary carcinogen 7,12-dimethyl-benzo(a)anthracene (DMBA). Also, we tested in human estrogen receptor (ER)α-negative sporadic UACC-3199 and ERα-positive MCF-7 breast cancer cells carrying respectively, hyper- and hypomethylated BRCA-1 gene, if the treatment with the AhR antagonist α-naphthoflavone (αNF) modulated BRCA-1 and ERα expression. Finally, we examined the association between expression of AhR and BRCA-1 promoter CpG methylation in human triple-negative (TNBC), luminal-A (LUM-A), LUM-B, and epidermal growth factor receptor-2 (HER-2)-positive breast tumor samples. RESULTS: Mammary tumors induced with DMBA had reduced BRCA-1 and ERα expression; higher Brca-1 promoter CpG methylation; increased expression of Ahr and its downstream target Cyp1b1; and higher proliferation markers Ccnd1 (cyclin D1) and Cdk4. In human UACC-3199 cells, low BRCA-1 was paralleled by constitutive high AhR expression; the treatment with αNF rescued BRCA-1 and ERα, while enhancing preferential expression of CYP1A1 compared to CYP1B1. Conversely, in MCF-7 cells, αNF antagonized estradiol-dependent activation of BRCA-1 without effects on expression of ERα. TNBC exhibited increased basal AhR and BRCA-1 promoter CpG methylation compared to LUM-A, LUM-B, and HER-2-positive breast tumors. CONCLUSIONS: Constitutive AhR expression coupled to BRCA-1 promoter CpG hypermethylation may be predictive markers of ERα-negative breast tumor development. Regimens based on selected AhR modulators (SAhRMs) may be useful for therapy against ERα-negative tumors, and possibly, TNBC with increased AhR and hypermethylated BRCA-1 gene.


Assuntos
Proteína BRCA1/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Metilação de DNA , Receptor alfa de Estrogênio/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley
7.
Mol Carcinog ; 54(4): 261-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24136580

RESUMO

Studies with murine models suggest that maternal exposure to aromatic hydrocarbon receptor (AhR) agonists may impair mammary gland differentiation and increase the susceptibility to mammary carcinogenesis in offspring. However, the molecular mechanisms responsible for these perturbations remain largely unknown. Previously, we reported that the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CpG methylation of the breast cancer-1 (BRCA-1) gene and reduced BRCA-1 expression in breast cancer cell lines. Based on the information both the human and rat BRCA-1 genes harbor xenobiotic responsive elements (XRE = 5'-GCGTG-3'), which are binding targets for the AhR, we extended our studies to the analysis of offspring of pregnant Sprague-Dawley rats treated during gestation with TCDD alone or in combination with the dietary AhR antagonist resveratrol (Res). We report that the in utero exposure to TCDD increased the number of terminal end buds (TEB) and reduced BRCA-1 expression in mammary tissue of offspring. The treatment with TCDD induced occupancy of the BRCA-1 promoter by DNA methyltransferase-1 (DNMT-1), CpG methylation of the BRCA-1 promoter, and expression of cyclin D1 and cyclin-dependent kinase-4 (CDK4). These changes were partially overridden by pre-exposure to Res, which stimulated the expression of the AhR repressor (AhRR) and its recruitment to the BRCA-1 gene. These findings point to maternal exposure to AhR agonists as a risk factor for breast cancer in offspring through epigenetic inhibition of BRCA-1 expression, whereas dietary antagonists of the AhR may exert protective effects.


Assuntos
Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/prevenção & controle , Genes BRCA1/efeitos dos fármacos , Exposição Materna/efeitos adversos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Estilbenos/uso terapêutico , Teratogênicos/toxicidade , Animais , Anticarcinógenos/uso terapêutico , Proteína BRCA1/genética , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/patologia , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gravidez , Regiões Promotoras Genéticas/efeitos dos fármacos , Ratos Sprague-Dawley , Resveratrol
8.
J Nutr Biochem ; 23(10): 1324-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22197621

RESUMO

Epigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XREs=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XREs in the proximal BRCA-1 promoter and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-α-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17ß-estradiol-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR; DNA methyl transferase (DNMT)1, DNMT3a and DNMT3b; methyl binding protein (MBD)2; and trimethylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses (1 µmol/L) the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation and the recruitment of the AhR, MBD2, H3K9me3 and DNMTs (1, 3a and 3b). Taken together, these observations provide mechanistic evidence for AhR agonists in the establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.


Assuntos
Proteína BRCA1/genética , Metilação de DNA , Inativação Gênica/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Estilbenos/farmacologia , Neoplasias da Mama/patologia , Carcinógenos/toxicidade , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Éxons , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Células MCF-7 , Regiões Promotoras Genéticas , Receptores de Hidrocarboneto Arílico/genética , Elementos de Resposta , Resveratrol , Análise de Sequência de DNA
9.
Cardiovasc Toxicol ; 11(3): 204-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21479763

RESUMO

Trichloroethylene (TCE) is a halogenated hydrocarbon used as a solvent in industrial settings and in house-cleaning products. Exposure to TCE has been linked to increased risk for congenital heart malformations in both human and animal models. Previous studies showed TCE exposure reduced the expression and function of the ATP-dependent calcium pump, Serca2a, which is important for regulating calcium flux in myocytes and maintaining physiological cardiac function. In this study, we investigated whether TCE reduced Serca2a expression by altering the methylation status of its proximal promoter region. Low doses of TCE exposure (10 ppb) induced DNA hyper methylation in the Serca2 promoter region in cardiac myoblast cells and rat embryonic cardiac tissue. TCE exposure induced DNA methylation in a region of the Serca2 promoter which is the target for SP1 binding site essential for regulation of Serca2a transcriptional activity. Chromatin immunoprecipitation data confirmed that TCE exposure reduced the binding of SP1 to the Serca2 promoter region adjacent to the methylated CpG dimer. Finally, low-dose TCE exposure reduced the concentration of S-adenosyl-methionine in exposed cells and embryos. These cumulative data indicate that epigenetic mechanisms, including DNA methylation, may be important in mediating the teratogenic effects of TCE in embryonic heart.


Assuntos
Metilação de DNA/efeitos dos fármacos , Coração/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Solventes/toxicidade , Tricloroetileno/toxicidade , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Ilhas de CpG , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Idade Gestacional , Coração/embriologia , Dados de Sequência Molecular , Mioblastos Cardíacos/enzimologia , Miócitos Cardíacos/enzimologia , Ratos , Ratos Sprague-Dawley , S-Adenosilmetionina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Transcrição Sp1/metabolismo , Fatores de Tempo
10.
J Nutr ; 140(9): 1607-14, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631324

RESUMO

The BRCA-1 protein is a tumor suppressor involved in repair of DNA damage. Epigenetic mechanisms contribute to its reduced expression in sporadic breast tumors. Through diet, humans are exposed to a complex mixture of xenobiotics and natural ligands of the aromatic hydrocarbon receptor (AhR), which contributes to the etiology of various types of cancers. The AhR binds xenobiotics, endogenous ligands, and many natural dietary bioactive compounds, including the phytoalexin resveratrol (Res). In estrogen receptor- alpha (ER alpha )-positive and BRCA-1 wild-type MCF-7 breast cancer cells, we investigated the influence of AhR activation with the agonist 2,3,7,8 tetrachlorobenzo(p)dioxin (TCDD) on epigenetic regulation of the BRCA-1 gene and the preventative effects of Res. We report that activation and recruitment of the AhR to the BRCA-1 promoter hampers 17 beta -estradiol (E2)-dependent stimulation of BRCA-1 transcription and protein levels. These inhibitory effects are paralleled by reduced occupancy of ER alpha , acetylated histone (AcH)-4, and AcH3K9. Conversely, the treatment with TCDD increases the association of mono-methylated-H3K9, DNA-methyltransferase-1 (DNMT1), and methyl-binding domain protein-2 with the BRCA-1 promoter and stimulates the accumulation of DNA strand breaks. The AhR-dependent repression of BRCA-1 expression is reversed by small interference for the AhR and DNMT1 or pretreatment with Res, which reduces TCDD-induced DNA strand breaks. These results support the hypothesis that epigenetic silencing of the BRCA-1 gene by the AhR is preventable with Res and provide the molecular basis for the development of dietary strategies based on natural AhR antagonists.


Assuntos
Anticarcinógenos/farmacologia , Proteína BRCA1/metabolismo , Epigênese Genética/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Estilbenos/farmacologia , Proteína BRCA1/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Dibenzodioxinas Policloradas , Regiões Promotoras Genéticas , Receptores de Hidrocarboneto Arílico/genética , Resveratrol , Estilbenos/administração & dosagem , Transcrição Gênica
11.
Inflamm Allergy Drug Targets ; 9(3): 181-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20553228

RESUMO

Factors related to diet and life style have been identified as primary determinants in about 80% of colorectal cancers. Non-steroidal anti-inflammatory drugs (NSAID) and selective cyclooxygenase-2 (COX-2) inhibitors (COXIB) reduce the relative risk of colon cancer. To overcome systemic COX inhibition associated with NSAID and COXIB, there is a growing interest in developing alternative colon cancer prevention strategies using diet-based approaches that target COX-2. The transition from aberrant crypt foci (ACF) to colon cancer is a multiyear process providing opportunities for nutritional targeting of genes influencing the course of this disease process at early stages of development. The activation of the proinflammatory gene COX-2 and PG production in the colonic mucosa are recognized risk factors in colon cancer. Many natural food components may impact colon cancer risk by interfering with ligand-activated receptors, signal transduction pathways, and transcription factors involved in stimulation of COX-2 expression. In this review, we highlight key upstream features of signaling pathways and transcriptional control of the COX-2 gene and discuss opportunities for dietary modulation of COX-2 expression in gastro-intestinal cancers with special emphasis on prevention of colorectal tumors. Review of the experimental evidence suggests that dietary strategies based on specific or cocktails of bioactive food components as well nutritional-pharmacological combinations targeted to regulation of COX-2 expression and activity may prove useful in the prevention of colon cancer. An integrated approach may offer the advantage of combined higher efficacies. Future studies should investigate the efficacy of combinations of bioactive food compounds on epigenetic regulation of the COX-2 gene and characterize potential synergies and amplification effects resulting from the concomitant use of bioactive food components and COX-2 inhibitors.


Assuntos
Neoplasias do Colo/prevenção & controle , Ciclo-Oxigenase 2/metabolismo , Dieta , Alimentos , Anticarcinógenos/farmacologia , Quimioprevenção , Neoplasias do Colo/enzimologia , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Comportamento de Redução do Risco , Transdução de Sinais
12.
J Nutr ; 139(1): 26-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19056653

RESUMO

Ligands of the aryl hydrocarbon receptor (AhR) include the environmental xenobiotic 2,3,7,8 tetrachlorodibenzo(p)dioxin (TCDD), polycyclic aryl hydrocarbons, and the dietary compounds 3, 3'-diindolylmethane (DIM), a condensation product of indol-3-carbinol found in Brassica vegetables, and the phytoalexin resveratrol (RES). The AhR and its cofactors regulate the expression of target genes at pentameric (GCGTG) xenobiotic responsive elements (XRE). Because the activation of cyclooxygenase-2 (COX-2) expression by AhR ligands may contribute to inflammation and tumorigenesis, we investigated the epigenetic regulation of the COX-2 gene by TCDD and the reversal effects of DIM in MCF-7 breast cancer cells. Results of DNA binding and chromatin immunoprecipitation (ChIP) studies documented that the treatment with TCDD induced the association of the AhR to XRE harbored in the COX-2 promoter and control CYP1A1 promoter oligonucleotides. The TCDD-induced binding of the AhR was reduced by small-interfering RNA for the AhR or the cotreatment with synthetic (3-methoxy-4-naphthoflavone) or dietary AhR antagonists (DIM, RES). In time course ChIP studies, TCDD induced the rapid (15 min) occupancy by the AhR, the histone acetyl transferase p300, and acetylated histone H4 (AcH4) at the COX-2 promoter. Conversely, the cotreatment of MCF-7 cells with DIM (10 micromol/L) abrogated the TCDD-induced recruitment of the AhR and AcH4 to the COX-2 promoter and the induction of COX-2 mRNA and protein levels. Taken together, these data suggest that naturally occurring modulators of the AhR such as DIM may be effective agents for dietary strategies against epigenetic activation of COX-2 expression by AhR agonists.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Indóis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias da Mama , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/metabolismo , Feminino , Histonas , Humanos , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Receptores de Hidrocarboneto Arílico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA