Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 9225, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239528

RESUMO

While cerebellar alterations may play a crucial role in the development of core autism spectrum disorder (ASD) symptoms, their pathophysiology on the function of cerebrocerebellar circuit loops is largely unknown. We combined multimodal MRI (9.4 T) brain assessment of the prenatal rat valproate (VPA) model and correlated immunohistological analysis of the cerebellar Purkinje cell number to address this question. We hypothesized that a suitable functional MRI (fMRI) paradigm might show some altered activity related to disrupted cerebrocerebellar information processing. Two doses of maternal VPA (400 and 600 mg/kg, s.c.) were used. The higher VPA dose induced 3% smaller whole brain volume, the lower dose induced 2% smaller whole brain volume and additionally a focal gray matter density decrease in the cerebellum and brainstem. Increased cortical BOLD responses to whisker stimulation were detected in both VPA groups, but it was more pronounced and extended to cerebellar regions in the 400 mg/kg VPA group. Immunohistological analysis revealed a decreased number of Purkinje cells in both VPA groups. In a detailed analysis, we revealed that the Purkinje cell number interacts with the cerebral BOLD response distinctively in the two VPA groups that highlights atypical function of the cerebrocerebellar circuit loops with potential translational value as an ASD biomarker.


Assuntos
Transtorno Autístico/patologia , Células de Purkinje/patologia , Ácido Valproico/efeitos adversos , Animais , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/fisiopatologia , Calbindinas/metabolismo , Contagem de Células , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Células de Purkinje/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
2.
J Physiol ; 594(13): 3775-90, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27028801

RESUMO

KEY POINTS: The median raphe is a key subcortical modulatory centre involved in several brain functions, such as regulation of the sleep-wake cycle, emotions and memory storage. A large proportion of median raphe neurones are glutamatergic and implement a radically different mode of communication compared to serotonergic cells, although their in vivo activity is unknown. We provide the first description of the in vivo, brain state-dependent firing properties of median raphe glutamatergic neurones identified by immunopositivity for the vesicular glutamate transporter type 3 (VGluT3) and serotonin (5-HT). Glutamatergic populations (VGluT3+/5-HT- and VGluT3+/5-HT+) were compared with the purely serotonergic (VGluT3-/5-HT+ and VGluT3-/5-HT-) neurones. VGluT3+/5-HT+ neurones fired similar to VGluT3-/5-HT+ cells, whereas they significantly diverged from the VGluT3+/5-HT- population. Activity of the latter subgroup resembled the spiking of VGluT3-/5-HT- cells, except for their diverging response to sensory stimulation. The VGluT3+ population of the median raphe may broadcast rapidly varying signals on top of a state-dependent, tonic modulation. ABSTRACT: Subcortical modulation is crucial for information processing in the cerebral cortex. Besides the canonical neuromodulators, glutamate has recently been identified as a key cotransmitter of numerous monoaminergic projections. In the median raphe, a pure glutamatergic neurone population projecting to limbic areas was also discovered with a possibly novel, yet undetermined function. In the present study, we report the first functional description of the vesicular glutamate transporter type 3 (VGluT3)-expressing median raphe neurones. Because there is no appropriate genetic marker for the separation of serotonergic (5-HT+) and non-serotonergic (5-HT-) VGluT3+ neurones, we utilized immunohistochemistry after recording and juxtacellular labelling in anaesthetized rats. VGluT3+/5-HT- neurones fired faster, more variably and were permanently activated during sensory stimulation, as opposed to the transient response of the slow firing VGluT3-/5-HT+ subgroup. VGluT3+/5-HT- cells were also more active during hippocampal theta. In addition, the VGluT3-/5-HT- population, comprising putative GABAergic cells, resembled the firing of VGluT3+/5-HT- neurones but without any significant reaction to the sensory stimulus. Interestingly, the VGluT3+/5-HT+ group, spiking slower than the VGluT3+/5-HT- population, exhibited a mixed response (i.e. the initial transient activation was followed by a sustained elevation of firing). Phase coupling to hippocampal and prefrontal slow oscillations was found in VGluT3+/5-HT- neurones, also differentiating them from the VGluT3+/5-HT+ subpopulation. Taken together, glutamatergic neurones in the median raphe may implement multiple, highly divergent forms of modulation in parallel: a slow, tonic mode interrupted by sensory-evoked rapid transients, as well as a fast one capable of conveying complex patterns influenced by sensory inputs.


Assuntos
Neurônios/fisiologia , Núcleos da Rafe/fisiologia , Serotonina/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/fisiologia , Animais , Hipocampo/fisiologia , Masculino , Córtex Pré-Frontal/fisiologia , Ratos Wistar
3.
Proc Natl Acad Sci U S A ; 111(37): 13535-40, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197052

RESUMO

Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.


Assuntos
Neurônios Colinérgicos/fisiologia , Hipocampo/fisiologia , Optogenética , Núcleos Septais/fisiologia , Ritmo Teta/fisiologia , Anestesia , Animais , Comportamento Animal , Neurônios Colinérgicos/efeitos da radiação , Hipocampo/efeitos da radiação , Luz , Camundongos Transgênicos , Atividade Motora/efeitos da radiação , Estimulação Luminosa , Núcleos Septais/efeitos da radiação , Ritmo Teta/efeitos da radiação
4.
PLoS One ; 8(6): e66547, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805233

RESUMO

Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [(3)H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [(3)H]5-HT and an elevated number of [(3)H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus.


Assuntos
Anedonia , Giro Denteado/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , Neurogênese , Receptores Purinérgicos P2X7/deficiência , Serotonina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout
5.
Brain Struct Funct ; 217(1): 37-48, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21643647

RESUMO

The nucleus accumbens (NAc) is positioned to integrate signals originating from limbic and cortical areas and to modulate reward-related motor output of various goal-directed behaviours. The major target of the NAc GABAergic output neurons is the ventral pallidum (VP). VP is part of the reward circuit and controls the ascending mesolimbic dopamine system, as well as the motor output structures and the brainstem. The excitatory inputs governing this system converge in the NAc from the prefrontal cortex (PFC), ventral hippocampus (vHC), midline and intralaminar thalamus (TH) and basolateral nucleus of the amygdala (BLA). It is unclear which if any of these afferents innervate the medium spiny neurons of the NAc, that project to the VP. To identify the source of glutamatergic afferents that innervate neurons projecting to the VP, a dual-labelling method was used: Phaseolus vulgaris leucoagglutinin for anterograde and EGFP-encoded adenovirus for retrograde tract-tracing. Within the NAc, anterogradely labelled BLA terminals formed asymmetric synapses on dendritic spines that belonged to medium spiny neurons retrogradely labelled from the VP. TH terminals also formed synapses on dendritic spines of NAc neurons projecting to the VP. However, dendrites and dendritic spines retrogradely labelled from VP received no direct synaptic contacts from afferents originating from mPFC and vHC in the present material, despite the large number of fibres labelled by the anterograde tracer injections. These findings represent the first experimental evidence for a selective glutamatergic innervation of NAc neurons projecting to the VP. The glutamatergic inputs of different origin (i.e. mPFC, vHC, BLA, TH) to the NAc might thus convey different types of reward-related information during goal-directed behaviour, and thereby contribute to the complex regulation of nucleus accumbens functions.


Assuntos
Vias Aferentes/fisiologia , Neurônios Aferentes/fisiologia , Núcleo Accumbens/fisiologia , Sinapses/fisiologia , Animais , Espinhas Dendríticas/fisiologia , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Masculino , Fito-Hemaglutininas , Ratos , Ratos Wistar
6.
J Neurosci ; 25(42): 9782-93, 2005 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-16237182

RESUMO

In the hippocampal CA1 area, a relatively homogenous population of pyramidal cells is accompanied by a diversity of GABAergic interneurons. Previously, we found that parvalbumin-expressing basket, axo-axonic, bistratified, and oriens-lacunosum moleculare cells, innervating different domains of pyramidal cells, have distinct firing patterns during network oscillations in vivo. A second family of interneurons, expressing cholecystokinin but not parvalbumin, is known to target the same domains of pyramidal cells as do the parvalbumin cells. To test the temporal activity of these independent and parallel GABAergic inputs, we recorded the precise spike timing of identified cholecystokinin interneurons during hippocampal network oscillations in anesthetized rats and determined their molecular expression profiles and synaptic targets. The cells were cannabinoid receptor type 1 immunopositive. Contrary to the stereotyped firing of parvalbumin interneurons, cholecystokinin-expressing basket and dendrite-innervating cells discharge, on average, with 1.7 +/- 2.0 Hz during high-frequency ripple oscillations in an episode-dependent manner. During theta oscillations, cholecystokinin-expressing interneurons fire with 8.8 +/- 3.3 Hz at a characteristic time on the ascending phase of theta waves (155 +/- 81 degrees), when place cells start firing in freely moving animals. The firing patterns of some interneurons recorded in drug-free behaving rats were similar to cholecystokinin cells in anesthetized animals. Our results demonstrate that cholecystokinin- and parvalbumin-expressing interneurons make different contributions to network oscillations and play distinct roles in different brain states. We suggest that the specific spike timing of cholecystokinin interneurons and their sensitivity to endocannabinoids might contribute to differentiate subgroups of pyramidal cells forming neuronal assemblies, whereas parvalbumin interneurons contribute to synchronizing the entire network.


Assuntos
Relógios Biológicos/fisiologia , Colecistocinina/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Parvalbuminas/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/fisiologia , Animais , Colecistocinina/biossíntese , Colecistocinina/genética , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Masculino , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Neurônios/citologia , Parvalbuminas/biossíntese , Parvalbuminas/genética , Ratos , Ratos Sprague-Dawley , Receptores de GABA/biossíntese , Receptores de GABA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA