Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Life (Basel) ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38541656

RESUMO

Anomia, or difficulty naming common objects, is the most common, acquired impairment of language. Effective therapeutic interventions for anomia typically involve massed practice at high doses. This requires significant investment from patients and therapists. Aphasia researchers have increasingly looked to neurostimulation to accelerate these treatment effects, but the evidence behind this intervention is sparse and inconsistent. Here, we hypothesised that group-level neurostimulation effects might belie a more systematic structure at the individual level. We sought to test the hypothesis by attempting to predict the immediate (online), individual-level behavioural effects of anodal and sham neurostimulation in 36 chronic patients with anomia, performing naming and size judgement tasks. Using clinical, (pre-stimulation) behavioural and MRI data, as well as Partial Least Squares regression, we attempted to predict neurostimulation effects on accuracies and reaction times of both tasks. Model performance was assessed via cross-validation. Predictive performances were compared to that of a null model, which predicted the mean neurostimulation effects for all patients. Models derived from pre-stimulation data consistently outperformed the null model when predicting neurostimulation effects on both tasks' performance. Notably, we could predict behavioural declines just as well as improvements. In conclusion, inter-patient variation in online responses to neurostimulation is, to some extent, systematic and predictable. Since declines in performance were just as predictable as improvements, the behavioural effects of neurostimulation in patients with anomia are unlikely to be driven by placebo effects. However, the online effect of the intervention appears to be as likely to interfere with task performance as to improve it.

2.
Neuroimage Clin ; 39: 103452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37321143

RESUMO

Aphasia is an acquired disorder caused by damage, most commonly due to stroke, to brain regions involved in speech and language. While language impairment is the defining symptom of aphasia, the co-occurrence of non-language cognitive deficits and their importance in predicting rehabilitation and recovery outcomes is well documented. However, people with aphasia (PWA) are rarely tested on higher-order cognitive functions, making it difficult for studies to associate these functions with a consistent lesion correlate. Broca's area is a particular brain region of interest that has long been implicated in speech and language production. Contrary to classic models of speech and language, cumulative evidence shows that Broca's area and surrounding regions in the left inferior frontal cortex (LIFC) are involved in, but not specific to, speech production. In this study we aimed to explore the brain-behaviour relationships between tests of cognitive skill and language abilities in thirty-six adults with long-term speech production deficits caused by post-stroke aphasia. Our findings suggest that non-linguistic cognitive functions, namely executive functions and verbal working memory, explain more of the behavioural variance in PWA than classical language models imply. Additionally, lesions to the LIFC, including Broca's area, were associated with non-linguistic executive (dys)function, suggesting that lesions to this area are associated with non-language-specific higher-order cognitive deficits in aphasia. Whether executive (dys)function - and its neural correlate in Broca's area - contributes directly to PWA's language production deficits or simply co-occurs with it, adding to communication difficulties, remains unclear. These findings support contemporary models of speech production that place language processing within the context of domain-general perception, action and conceptual knowledge. An understanding of the covariance between language and non-language deficits and their underlying neural correlates will inform better targeted aphasia treatment and outcomes.


Assuntos
Afasia , Transtornos Cognitivos , Acidente Vascular Cerebral , Adulto , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Acidente Vascular Cerebral/complicações , Transtornos Cognitivos/complicações , Cognição
3.
Appl Neuropsychol Adult ; 29(6): 1669-1680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33794120

RESUMO

Improvements in patient outcomes and mortality after brain injury alongside increasing ageing population have resulted in an increasing need to develop cognitive interventions for individuals experiencing changes in their cognitive function. One topic of increasing research interest is whether cognitive functions such as attention, memory and executive functioning can be improved through the use of working memory training interventions. Both clinical and neuroimaging researchers are working to evidence this, but their efforts rarely come together. We discuss here several issues that may be hindering progress in this area, including the tools researchers utilize to measure cognition, the choice between employing active or passive control groups, the focus on transfer effects at the expense of well-characterized training effects, and the overall lack of neuroimaging studies in individuals with neurological disorders. We argue that the only way to advance the field is to build bridges between the disciplines of clinical neuropsychology and cognitive neuroscience. We suggest a multi-level framework to validate the efficacy of working memory interventions and other forms of cognitive training that combine both clinical and neuroimaging approaches. We conclude that in order to move forward we need to form multidisciplinary teams, employ interdisciplinary methods, brain imaging quality rating tools and build national and international collaborations based on open science principles.


Assuntos
Aprendizagem , Memória de Curto Prazo , Cognição , Função Executiva , Humanos , Neuroimagem
4.
Wellcome Open Res ; 6: 143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37008187

RESUMO

Introduction: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate human brain and behavioural function in both research and clinical interventions. The combination of functional magnetic resonance imaging (fMRI) with tDCS enables researchers to directly test causal contributions of stimulated brain regions, answering questions about the physiology and neural mechanisms underlying behaviour. Despite the promise of the technique, advances have been hampered by technical challenges and methodological variability between studies, confounding comparability/replicability. Methods: Here tDCS-fMRI at 3T was developed for a series of experiments investigating language recovery after stroke. To validate the method, one healthy volunteer completed an fMRI paradigm with three conditions: (i) No-tDCS, (ii) Sham-tDCS, (iii) 2mA Anodal-tDCS. MR data were analysed in SPM12 with region-of-interest (ROI) analyses of the two electrodes and reference sites. Results: Quality assessment indicated no visible signal dropouts or distortions introduced by the tDCS equipment. After modelling scanner drift, motion-related variance, and temporal autocorrelation, we found no field inhomogeneity in functional sensitivity metrics across conditions in grey matter and in the three ROIs. Discussion: Key safety factors and risk mitigation strategies that must be taken into consideration when integrating tDCS into an fMRI environment are outlined. To obtain reliable results, we provide practical solutions to technical challenges and complications of the method. It is hoped that sharing these data and SOP will promote methodological replication in future studies, enhancing the quality of tDCS-fMRI application, and improve the reliability of scientific results in this field. Conclusions: The method and data provided here provide a technically safe, reliable tDCS-fMRI procedure to obtain high quality MR data. The detailed framework of the Standard Operation Procedure SOP ( https://doi.org/10.5281/zenodo.4606564) systematically reports the technical and procedural elements of our tDCS-fMRI approach, which we hope can be adopted and prove useful in future studies.

5.
Neurosci Biobehav Rev ; 118: 209-235, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738262

RESUMO

AIMS: Recent reviews yield contradictory findings regarding the efficacy of working memory training and transfer to untrained tasks. We reviewed working memory updating (WMU) training studies and examined cognitive and neural outcomes on training and transfer tasks. METHODS: Database searches for adult brain imaging studies of WMU training were conducted. Training-induced neural changes were assessed qualitatively, and meta-analyses were performed on behavioural training and transfer effects. RESULTS: A large behavioural training effect was found for WMU training groups compared to control groups. There was a moderate near transfer effect on tasks in the same cognitive domain, and a non-significant effect for far transfer to other cognitive domains. Functional neuroimaging changes for WMU training tasks revealed consistent frontoparietal activity decreases while both decreases and increases were found for subcortical regions. CONCLUSIONS: WMU training promotes plasticity and has potential applications in optimizing interventions for neurological populations. Future research should focus on the mechanisms and factors underlying plasticity and generalisation of training gains.


Assuntos
Memória de Curto Prazo , Transferência de Experiência , Adulto , Encéfalo/diagnóstico por imagem , Humanos , Aprendizagem , Neuroimagem
6.
Ann Clin Transl Neurol ; 6(5): 902-912, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31139688

RESUMO

OBJECTIVE: Dementia is a common and feared aspect of Parkinson's disease but there are no robust predictors of cognitive outcome. Visuoperceptual deficits are linked to risk of dementia in Parkinson's disease but whether they predict cognitive change is not known, and the neural substrates of visuoperceptual dysfunction in Parkinson's have not yet been identified. METHODS: We compared patients with Parkinson's disease and unaffected controls who underwent BOLD fMRI while performing our previously validated visuoperceptual task and tested how functional connectivity between task-specific regions and the rest of the brain differed between patients who performed well and poorly in the task. RESULTS: We show that task performance at baseline predicts change in cognition in Parkinson's disease after 1 year. Our task-based fMRI study showed that the performance in this task is associated with activity in the posterior cingulate cortex/precuneus. We found that functional connectivity between this region and dorsomedial prefrontal cortex was reduced in poor performers compared with good performers of this task. INTERPRETATION: Our findings suggest that functional connectivity is reduced between posterior and anterior hubs of the default mode network in Parkinson's patients who are likely to progress to worsening cognitive dysfunction. Our work implicates posterior default mode nodes and their connections as key brain regions in early stages of dementia in Parkinson's disease.


Assuntos
Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Idoso , Transtornos Cognitivos , Disfunção Cognitiva/diagnóstico por imagem , Demência/diagnóstico por imagem , Demência/etiologia , Demência/fisiopatologia , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Lobo Parietal/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Percepção/fisiologia
7.
Brain ; 141(7): 2127-2141, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912350

RESUMO

Central alexia is an acquired reading disorder co-occurring with a generalized language deficit (aphasia). We tested the impact of a novel training app, 'iReadMore', and anodal transcranial direct current stimulation of the left inferior frontal gyrus, on word reading ability in central alexia. The trial was registered at www.clinicaltrials.gov (NCT02062619). Twenty-one chronic stroke patients with central alexia participated. A baseline-controlled, repeated-measures, crossover design was used. Participants completed two 4-week blocks of iReadMore training, one with anodal stimulation and one with sham stimulation (order counterbalanced between participants). Each block comprised 34 h of iReadMore training and 11 stimulation sessions. Outcome measures were assessed before, between and after the two blocks. The primary outcome measures were reading ability for trained and untrained words. Secondary outcome measures included semantic word matching, sentence reading, text reading and a self-report measure. iReadMore training resulted in an 8.7% improvement in reading accuracy for trained words (95% confidence interval 6.0 to 11.4; Cohen's d = 1.38) but did not generalize to untrained words. Reaction times also improved. Reading accuracy gains were still significant (but reduced) 3 months after training cessation. Anodal transcranial direct current stimulation (compared to sham), delivered concurrently with iReadMore, resulted in a 2.6% (95% confidence interval -0.1 to 5.3; d = 0.41) facilitation for reading accuracy, both for trained and untrained words. iReadMore also improved performance on the semantic word-matching test. There was a non-significant trend towards improved self-reported reading ability. However, no significant changes were seen at the sentence or text reading level. In summary, iReadMore training in post-stroke central alexia improved reading ability for trained words, with good maintenance of the therapy effect. Anodal stimulation resulted in a small facilitation (d = 0.41) of learning and also generalized to untrained items.10.1093/brain/awy138_video1awy138media15796149281001.


Assuntos
Dislexia Adquirida/terapia , Leitura , Adulto , Idoso , Afasia/terapia , Encéfalo , Dislexia/terapia , Feminino , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiopatologia , Semântica , Acidente Vascular Cerebral/complicações , Estimulação Transcraniana por Corrente Contínua/métodos , Aprendizagem Verbal
8.
Mov Disord ; 33(4): 544-553, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29473691

RESUMO

BACKGROUND: People with Parkinson's disease (PD) who develop visuo-perceptual deficits are at higher risk of dementia, but we lack tests that detect subtle visuo-perceptual deficits and can be performed by untrained personnel. Hallucinations are associated with cognitive impairment and typically involve perception of complex objects. Changes in object perception may therefore be a sensitive marker of visuo-perceptual deficits in PD. OBJECTIVE: We developed an online platform to test visuo-perceptual function. We hypothesised that (1) visuo-perceptual deficits in PD could be detected using online tests, (2) object perception would be preferentially affected, and (3) these deficits would be caused by changes in perception rather than response bias. METHODS: We assessed 91 people with PD and 275 controls. Performance was compared using classical frequentist statistics. We then fitted a hierarchical Bayesian signal detection theory model to a subset of tasks. RESULTS: People with PD were worse than controls at object recognition, showing no deficits in other visuo-perceptual tests. Specifically, they were worse at identifying skewed images (P < .0001); at detecting hidden objects (P = .0039); at identifying objects in peripheral vision (P < .0001); and at detecting biological motion (P = .0065). In contrast, people with PD were not worse at mental rotation or subjective size perception. Using signal detection modelling, we found this effect was driven by change in perceptual sensitivity rather than response bias. CONCLUSIONS: Online tests can detect visuo-perceptual deficits in people with PD, with object recognition particularly affected. Ultimately, visuo-perceptual tests may be developed to identify at-risk patients for clinical trials to slow PD dementia. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Sistemas On-Line , Doença de Parkinson/complicações , Transtornos da Percepção/etiologia , Percepção Visual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Percepção de Movimento/fisiologia , Testes Neuropsicológicos , Transtornos da Percepção/diagnóstico , Desempenho Psicomotor/fisiologia , Reconhecimento Psicológico , Detecção de Sinal Psicológico , Acuidade Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA