Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Appl Supercond ; 29(5)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31360051

RESUMO

Readout of a large, spacecraft-based array of superconducting transition-edge sensors (TESs) requires careful management of the layout area and power dissipation of the cryogenic-circuit components. We present three optimizations of our time- (TDM) and code-division-multiplexing (CDM) systems for the X-ray Integral Field Unit (X-IFU), a several-thousand-pixel-TES array for the planned Athena-satellite mission. The first optimization is a new readout scheme that is a hybrid of CDM and TDM. This C/TDM architecture balances CDM's noise advantage with TDM's layout compactness. The second is a redesign of a component: the shunt resistor that provides a dc-voltage bias to the TESs. A new layout and a thicker Pd-Au resistive layer combine to reduce this resistor's area by more than a factor of 5. Third, we have studied the power dissipated by the first-stage SQUIDs (superconducting quantum-interference devices) and the readout noise versus the critical current of the first-stage SqUIDs. As a result, the X-IFU TDM and C/TDM SQUIDs will have a specified junction critical current of 5 µA. Based on these design optimizations and TDM experiments described by Durkin, et al. (these proceedings), TDM meets all requirements to be X-IFU's backup-readout option. Hybrid C/TDM is another viable option that could save spacecraft resources.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31160861

RESUMO

Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3,168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for ESA's Athena satellite mission. X-0IFU design studies are considering readout with a multiplexing factor of up to 40. We present data showing 40-row TDM readout (32 TES rows + 8 repeats of the last row) of TESs that are of the same type as those being planned for X-IFU, using measurement and analysis parameters within the ranges specified for X-IFU. Singlecolumn TDM measurements have best-fit energy resolution of (1.91 ± 0.01) eV for the Al Kα complex (1.5 keV), (2.10 ± 0.02) eV for Ti Kα (4.5 keV), (2.23 ± 0.02) eV for Mn Kα (5.9 keV), (2.40 ± 0.02) eV for Co Kα (6.9 keV), and (3.44 ± 0.04) eV for Br Kα (11.9 keV). Three-column measurements have best-fit resolution of (2.03 ± 0.01) eV for Ti Kα and (2.40 ± 0.01) eV for Co Kα. The degradation due to the multiplexed readout ranges from 0.1 eV at the lower end of the energy range to 0.5 eV at the higher end. The demonstrated performance meets X-IFU's energy-resolution and energy-range requirements. True 40-row TDM readout, without repeated rows, of kilopixel scale arrays of X-IFU-like TESs is now under development.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33335337

RESUMO

Microwave SQUID multiplexing has become a key technology for reading out large arrays of X-ray and gamma-ray microcalorimeters with mux factors of 100 or more. The desire for fast X-ray pulses that accommodate photon counting rates of hundreds or thousands of counts per second per sensor drives system design toward high sensor current slew rate. Typically, readout of high current slew rate events is accomplished by increasing the sampling rate, such that rates of order 1MHz may be necessary for some experiments. In our microwave multiplexed readout scheme, the effective sampling rate is set by the frequency of the flux-ramp modulation (f r) used to linearize the SQUID response. The maximum current slew rate between samples is then nominally Φ 0 f r/2M in (where M in is the input coupling) because it is generally not possible to distinguish phase shifts of > π from negative phase shifts of < -π. However, during a pulse, we know which direction the current ought to be slewing, and this makes it possible to reconstruct a pulse where the magnitude of the phase shift between samples is > π. We describe a practical algorithm to identify and reconstruct pulses that exceed this nominal slew rate limit on the rising edge. Using pulses produced by X-ray transition-edge sensors, we find that the pulse reconstruction has a negligible impact on energy resolution compared to arrival time effects induced by under-sampling the rising edge. This technique can increase the effective slew rate limit by more than a factor of two, thereby either reducing the resonator bandwidth required or extending the energy range of measurable photons. The extra margin could also be used to improve crosstalk or to decrease readout noise.

4.
Soft Matter ; 12(40): 8307-8315, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27722469

RESUMO

Despite progress, a fundamental understanding of the relationships between the molecular structure and self-assembly configuration of Fmoc-dipeptides is still in its infancy. In this work, we provide a combined experimental and computational approach that makes use of free energy equilibration of a number of related Fmoc-dipeptides to arrive at an atomistic model of Fmoc-threonine-phenylalanine-amide (Fmoc-TF-NH2) which forms twisted fibres. By using dynamic peptide libraries where closely related dipeptide sequences are dynamically exchanged to eventually favour the formation of the thermodynamically most stable configuration, the relative importance of C-terminus modifications (amide versus methyl ester) and contributions of aliphatic versus aromatic amino acids (phenylalanine F vs. leucine L) is determined (F > L and NH2 > OMe). The approach enables a comparative interpretation of spectroscopic data, which can then be used to aid the construction of the atomistic model of the most stable structure (Fmoc-TF-NH2). The comparison of the relative stabilities of the models using molecular dynamic simulations and the correlation with experimental data using dynamic peptide libraries and a range of spectroscopy methods (FTIR, CD, fluorescence) allow for the determination of the nanostructure with atomistic resolution. The final model obtained through this process is able to reproduce the experimentally observed formation of intertwining fibres for Fmoc-TF-NH2, providing information of the interactions involved in the hierarchical supramolecular self-assembly. The developed methodology and approach should be of general use for the characterization of supramolecular structures.


Assuntos
Dipeptídeos/química , Fluorenos/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Nanoestruturas
5.
Phys Rev Lett ; 109(3): 036801, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861882

RESUMO

Measurements on very low disorder two-dimensional electrons confined to relatively wide GaAs quantum well samples with tunable density reveal a close competition between the electron liquid and solid phases near the Landau level filling factor ν=1. As the density is raised, the fractional quantum Hall liquid at ν=4/5 suddenly disappears at a well-width dependent critical density, and then reappears at higher densities with insulating phases on its flanks. These insulating phases exhibit reentrant ν=1 integer quantum Hall effects and signal the formation of electron Wigner crystal states. Qualitatively similar phenomena are seen near ν=6/5.

6.
Mil Med ; 166(5): 394-400, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11370201

RESUMO

The Ranger medic (military occupational specialty 91B) provides advanced trauma management across the operational spectrum in which the 75th Ranger Regiment is employed. Ranger medic duties, both in combat environments and in training, medical training, professional progression, and medical assets in the Ranger battalion are detailed. Ranger medic training management tools and techniques are discussed and illustrated. The role of the combat lifesaver, force modernization, and interoperability issues facing the medical team are discussed. The Ranger medic is a capable special operations tactical medic.


Assuntos
Pessoal Técnico de Saúde/educação , Medicina Militar/educação , Militares/educação , Pessoal Técnico de Saúde/organização & administração , Serviços Médicos de Emergência , Humanos , Capacitação em Serviço , Cuidados para Prolongar a Vida
7.
J Surg Res ; 59(4): 504-10, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7564325

RESUMO

A thoracic electric bioimpedance device with improved signal processing was used to noninvasively measure cardiac output in eight New Zealand White rabbits (average wt = 4.7 kg). Prospective correlation was performed between aortic thermodilution and impedance cardiography in a closed chest model. Aortic thermodilution was compared to the electromagnetic flowmeter in an open chest model. In four rabbits, the change in the impedance signal (dZ/dt) was quantified after repeated mechanical occlusion of the aorta and pulmonary artery. The mean cardiac output as measured by the impedance device was 0.56 +/- 0.01 liter/min (range 0.29-1.16 liter/min) compared to 0.53 +/- 0.01 liter/min (range 0.25-0.83 liter/min) by aortic thermodilution. For the 116 data pairs, regression analysis revealed a statistically significant agreement (r = 0.82, P < 0.001) between the two techniques. The mean difference between the techniques (bias) was -0.03 liter/min and 81% of the impedance values were within 0.1 liter/min of the individual thermodilution measurements. A statistically significant decline in the mean magnitude of the dZ/dt signal tracing (1.6 +/- 0.10 V-pre, 0.31 +/- 0.4 V-post, P < 0.005, n = 21) was observed upon aortic arch occlusion. conversely, pulmonary artery occlusion did not have a statistical effect on the impedance signal (1.07 +/- 0.09-pre, 0.95 +/- 0.08-post, P > 0.05, n = 20). In conclusion, a significant correlation was observed between impedance cardiography and aortic thermodilution in measurement of cardiac output in sedated, anesthetized rabbits. This simple technique which involves application of skin electrodes may prove useful in measurement of cardiac output in surgical experimental small animal models.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Débito Cardíaco , Cardiografia de Impedância/métodos , Animais , Pressão Sanguínea , Frequência Cardíaca , Coelhos , Termodiluição
8.
Crit Care Med ; 23(7): 1243-50, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7600834

RESUMO

OBJECTIVE: To verify two hypotheses: a) In-line microwave warming of cold in-date packed red blood cells (RBCs) does not produce significant hemolysis; and b) in-line microwave warming achieves higher outlet temperatures as compared with current blood warming technology at high flow rates (> 250 mL/min). DESIGN: Multiple part, randomized, controlled study. SETTING: Surgical research laboratory of a large university medical center. SUBJECTS: Twenty-four units of cold, ready for transfusion in-date packed RBCs ranging in storage age from 6 to 16 days. INTERVENTIONS: Part I: Microwave apparatus outlet, warmed vs. unwarmed. Six units of cold packed RBCs was split into paired samples and infused at 13 mL/min through a 700-watt in-line microwave test apparatus. One paired specimen was warmed to 37 degrees C; the other was infused without warming (control). Blood was analyzed at the outlet. Part II: Microwave and countercurrent warming, inlet vs. outlet. Twelve units of cold packed RBCs was analyzed biochemically both before (inlet) and after (outlet) simulated transfusions. Six units was infused through a 900-watt in-line microwave test apparatus at > 500 mL/min. Six separate cold units were warmed at this rate using single channel countercurrent water bath warming. Part III: Microwave and countercurrent technology, inlet vs. outlet, warmed vs. unwarmed. a) Six units of cold packed RBCs was also analyzed biochemically and infused at 5 mL/min through either a microwave or countercurrent water bath warmer. b) Packed RBCs from the units used in part a) were allowed to remain stationary in the microwave heating cartridge for 15 mins with an activated heating element. Parallel stationary flow studies were done using the countercurrent blood warmer. Control unwarmed samples were also tested. MEASUREMENTS AND MAIN RESULTS: Part I: No statistical differences in hemolysis parameters were observed between microwave warmed and unwarmed packed RBCs. Part II: At high-flow rates, no statistical increases in hemolysis parameters were seen after in-line microwave or countercurrent water bath warming as compared with prewarmed cold controls. Part III: At slow-flow rates, nonstatistically significant increases were seen by passing the packed RBCs through either test apparatus unwarmed. Packed RBCs remaining stationary within microwave and countercurrent heating cartridges for 15 mins did show biochemical evidence of hemolysis. Mean plasma hemoglobin increased from 14 +/- 1.7 mg/dL in cold prewarmed units to 57.7 +/- 5.8 mg/dL (p < .05), when warmed in the microwave heating cartridge, and to 55.2 +/- 25 mg/dL (p < .05), when warmed in the countercurrent heat exchanger. Outlet Temperature Studies. Part II: The in-line 900-watt microwave device warmed cold units from a mean inlet temperature of 8.3 +/- 0.3 degrees C to a mean outlet temperature of 31.8 +/- 0.5 degrees C within 5 secs at a mean flow rate of 556 mL/min. At 30 secs, the mean outlet temperature was 33.9 +/- 0.4 degrees C (mean inlet temperature = 9.6 +/- 0.2 degrees C) for microwave warmed packed RBCs as compared with 32.1 +/- 0.5 degrees C (mean inlet temperature = 9.6 +/- 0.3 degrees C) in countercurrent water bath warmed blood (p < .05). From 20 to 30 secs, the packed RBCs warmed by microwave were statistically warmer than the countercurrent water bath warmed packed RBCs. CONCLUSIONS: a) Both in-line countercurrent warming and in-line microwave warming were associated with small increases in parameters of red cell damage representing statistically and clinically insignificant hemolysis. b) Blood sitting in any blood warming device is subject to statistically significant but clinically irrelevant increases in those parameters. c) At high-flow rates, the in-line microwave device warmed blood to higher outlet temperatures than the single channel countercurrent water bath warmer. This method may represent a clinical blood warming modality of the near future.


Assuntos
Transfusão de Eritrócitos/métodos , Eritrócitos/efeitos da radiação , Micro-Ondas , Preservação de Sangue , Transfusão de Eritrócitos/instrumentação , Hemólise/efeitos da radiação , Humanos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA