Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514757

RESUMO

Continuous, real-time monitoring of occupational health and safety in high-risk workplaces such as construction sites can substantially improve the safety of workers. However, introducing such systems in practice is associated with a number of challenges, such as scaling up the solution while keeping its cost low. In this context, this work investigates the use of an off-the-shelf, low-cost smartwatch to detect health issues based on heart rate monitoring in a privacy-preserving manner. To improve the smartwatch's low measurement quality, a novel, frugal machine learning method is proposed that corrects measurement errors, along with a new dataset for this task. This method's integration with the smartwatch and the remaining parts of the health and safety monitoring system (built on the ASSIST-IoT reference architecture) are presented. This method was evaluated in a laboratory environment in terms of its accuracy, computational requirements, and frugality. With an experimentally established mean absolute error of 8.19 BPM, only 880 bytes of required memory, and a negligible impact on the performance of the device, this method meets all relevant requirements and is expected to be field-tested in the coming months. To support reproducibility and to encourage alternative approaches, the dataset, the trained model, and its implementation on the smartwatch were published under free licenses.


Assuntos
Eletrocardiografia , Local de Trabalho , Humanos , Frequência Cardíaca/fisiologia , Reprodutibilidade dos Testes , Monitorização Fisiológica/métodos
2.
J Med Syst ; 40(11): 238, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27665112

RESUMO

Internet of Things (IoT) requires novel solutions to facilitate autonomous, though controlled, resource access. Access policies have to facilitate interactions between heterogeneous entities (devices and humans). Here, we focus our attention on access control in eHealth. We propose an approach based on enriching policies, based on well-known and widely-used eXtensible Access Control Markup Language, with semantics. In the paper we describe an implementation of a Policy Information Point integrated with the HL7 Security and Privacy Ontology.


Assuntos
Segurança Computacional , Confidencialidade , Semântica , Telemedicina/métodos , Humanos , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA