Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Lett ; 408: 121-129, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28844710

RESUMO

Chronic exposure to cadmium is known to be a risk factor for human prostate cancer. Despite over-whelming evidence of cadmium causing carcinogenicity in humans, the specific underlying molecular mechanisms that govern metal-induced cellular transformation remain unclear. Acute exposure (up to 72 h) to cadmium induces apoptosis in normal prostate epithelial cells (RWPE-1), while chronic exposure (>1 year) transforms these cells to a malignant phenotype (cadmium-transformed prostate epithelial cells; CTPE). Increased expression of autophagy-regulated genes; Plac8, LC3B and Lamp-1; in CTPE cells was associated with cadmium-induced transformation. Increased expression of Plac8, a regulator of autophagosome/autolysosome fusion, facilitates the pro-survival function of autophagy and upregulation of pAKT(ser473) and NF-κß, to allow CTPE to proliferate. Likewise, inhibition of Plac8 suppresses CTPE cell growth. Additionally, overexpression of Plac8 in RWPE-1 cells induces resistance to cadmium toxicity. Pharmacological inhibitors and an inducer of autophagy failed to affect Plac8 expression and CTPE cell viability, suggesting a unique role for Plac8 in cadmium-induced prostate epithelial cell transformation. These results support a role for Plac8 as an essential component in the cadmium-induced transformation of normal prostate epithelial cells to a cancerous state.


Assuntos
Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Transformação Celular Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Proteínas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Urol Oncol ; 34(8): 336.e13-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27133223

RESUMO

PURPOSE: The diagnosis and treatment of prostate cancer (CaP) continues to be challenging, as prostate-specific antigen (PSA) appears to be overly sensitive and biopsy is the only reliable method for confirmation. Hence, the goal of the study is to identify a biomarker that could distinguish malignant cancer from benign prostatic hyperplasia (BPH) during the early diagnosis of the disease. MATERIALS AND METHODS: A total of 75 formalin fixed paraffin embedded (FFPE) with matching controls, 4 paired metastatic tumors, 6 fresh tumor tissues and BPH (13 cases) with their clinical diagnosis were selected for this study. Prostate cancer cell lines and normal prostate epithelial cell lines were obtained from ATCC and subjected to phenotypic analysis. RESULTS: We observed significant differential expression of miR-301a in CaP samples in comparison to BPH and adjacent benign samples. The overexpression of miR-301a activates the invasion/migration of CaP cells. In contrast, silencing miR-301a expression inhibited the colony-forming ability, adhesion, invasion and migration of CaP cells. Similarly, the overexpression of miR-301a increased cell motility in normal RWPE-1 prostate epithelial cells. Our results suggest that miR-301a is differentially expressed between BPH and CaP specimens and that the expression of miR-301a correlates with biochemical recurrence and/or metastasis in CaP patients. CONCLUSIONS: The expression of miR-301a could be a potential marker for metastasis in CaP patients. Detecting miR-301a expression during diagnosis will avoid wait and watch timelines, thus preventing morbidity.


Assuntos
Biomarcadores Tumorais/metabolismo , MicroRNAs/metabolismo , Neoplasias da Próstata/diagnóstico , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , Prognóstico , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/metabolismo
3.
Cancer Lett ; 377(2): 134-9, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27126362

RESUMO

The activation of AKT governs many signaling pathways and promotes cell growth and inhibits apoptosis in human malignancies including prostate cancer (CaP). Here, we investigated the molecular association between AKT activation and the function of death-associated protein kinase 3 (DAPK3) in CaP. An inverse correlation of pAKT and DAPK3 expression was seen in a panel of CaP cell lines. Inhibition of AKT by wortmannin/LY294002 or overexpression of DAPK3 reverts the proliferative function of AKT in CaP cells. On the other hand, ectopic expression of AKT inhibited DAPK3 function and induced proliferation of CaP cells. In addition, AKT over-expressed tumors exhibit aggressive growth when compared to control vector in xenograft models. The immunohistochemistry results revealed a down-regulation of DAPK3 expression in AKT over-expressed tumors as compared to control tumors. Finally, we examined the expression pattern of AKT and DAPK3 in human CaP specimens - the expected gradual increase and nuclear localization of pAKT was seen in higher Gleason score samples versus benign hyperplasia (BPH). On the contrary, reduced expression of DAPK3 was seen in higher Gleason stages versus BPH. This suggests that inhibition of DAPK3 may be a contributing factor to the carcinogenesis of the prostate. Understanding the mechanism by which AKT negatively regulates DAPK3 function may suggest whether DAPK3 can be a therapeutic target for CaP.


Assuntos
Apoptose , Proteínas Quinases Associadas com Morte Celular/metabolismo , Neoplasias da Próstata/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Quinases Associadas com Morte Celular/genética , Ativação Enzimática , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Gradação de Tumores , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA