Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 128, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816863

RESUMO

BACKGROUND: In yeasts belonging to the subphylum Saccharomycotina, genes encoding components of the main metabolic pathways, like alcoholic fermentation, are usually conserved. However, in fructophilic species belonging to the floral Wickerhamiella and Starmerella genera (W/S clade), alcoholic fermentation was uniquely shaped by events of gene loss and horizontal gene transfer (HGT). RESULTS: Because HGT and gene losses were first identified when only eight W/S-clade genomes were available, we collected publicly available genome data and sequenced the genomes of 36 additional species. A total of 63 genomes, representing most of the species described in the clade, were included in the analyses. Firstly, we inferred the phylogenomic tree of the clade and inspected the genomes for the presence of HGT-derived genes involved in fructophily and alcoholic fermentation. We predicted nine independent HGT events and several instances of secondary loss pertaining to both pathways. To investigate the possible links between gene loss and acquisition events and evolution of sugar metabolism, we conducted phenotypic characterization of 42 W/S-clade species including estimates of sugar consumption rates and fermentation byproduct formation. In some instances, the reconciliation of genotypes and phenotypes yielded unexpected results, such as the discovery of fructophily in the absence of the cornerstone gene (FFZ1) and robust alcoholic fermentation in the absence of the respective canonical pathway. CONCLUSIONS: These observations suggest that reinstatement of alcoholic fermentation in the W/S clade triggered a surge of innovation that goes beyond the utilization of xenologous enzymes, with fructose metabolism playing a key role.


Assuntos
Transferência Genética Horizontal , Filogenia , Metabolismo dos Carboidratos/genética , Açúcares/metabolismo , Evolução Molecular , Genoma Fúngico
2.
iScience ; 27(2): 108987, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333711

RESUMO

When Saccharomyces cerevisiae grows on mixtures of glucose and galactose, galactose utilization is repressed by glucose, and induction of the GAL gene network only occurs when glucose is exhausted. Contrary to reference GAL alleles, alternative alleles support faster growth on galactose, thus enabling distinct galactose utilization strategies maintained by balancing selection. Here, we report on new wild populations of Saccharomyces cerevisiae harboring alternative GAL versions and, for the first time, of Saccharomyces paradoxus alternative alleles. We also show that the non-functional GAL version found earlier in Saccharomyces kudriavzevii is phylogenetically related to the alternative versions, which constitutes a case of trans-specific maintenance of highly divergent alleles. Strains harboring the different GAL network variants show different levels of alleviation of glucose repression and growth proficiency on galactose. We propose that domestication involved specialization toward thriving in milk from a generalist ancestor partially adapted to galactose consumption in the plant niche.

3.
Food Microbiol ; 115: 104320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567630

RESUMO

Certain lineages of the wine, beer and bread yeast Saccharomyces cerevisiae have diastatic activity. They contain the chimeric gene STA1 that codes for an extracellular glucoamylase which enables the strains to degrade starch and dextrins. Beer contaminations by diastatic yeasts can be dangerous because they can cause super-attenuation due to the consumption of otherwise non-fermentable oligosaccharides, gushing and off-flavours. Given that diastatic yeasts can be used for beer fermentation it is important to understand the relationship between production and contaminant strains, their natural reservoirs and entry routes into the brewery. Here, we analyze real cases of contamination in a Portuguese craft brewery over a period of 18 months. By analyzing with whole genome sequencing several contaminants, we show that recurrent contaminations by diastatic yeasts are caused by environmental strains. Moreover, some beer contaminants were closely related to diastatic environmental strains isolated in Botswana. We observed the widespread presence of domestication signatures in diastatic strains. Moreover, the combined phylogeny of STA1 and its ancestor, SGA1, suggested a single STA1 origin, as ancient as the entire lineage of diastatic yeasts. Together, our results suggest that diastatic yeasts isolated in natural settings could be escaping from domestication settings and becoming feral.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA