Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 13782-13796, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559933

RESUMO

Tuberculosis (TB)-causing bacterium Mycobacterium tuberculosis (Mtb) utilizes mycolic acids for building the mycobacterial cell wall, which is critical in providing defense against external factors and resisting antibiotic action. MmpL3 is a secondary resistance nodulation division transporter that facilitates the coupled transport of mycolic acid precursor into the periplasm using the proton motive force, thus making it an attractive drug target for TB infection. In 2019, X-ray crystal structures of MmpL3 from M. smegmatis were solved with a promising inhibitor SQ109, which showed promise against drug-resistant TB in Phase II clinical trials. Still, there is a pressing need to discover more effective MmpL3 inhibitors to counteract rising antibiotic resistance. In this study, structure-based high-throughput virtual screening combined with molecular dynamics (MD) simulations identified potential novel MmpL3 inhibitors. Approximately 17 million compounds from the ZINC15 database were screened against the SQ109 binding site on the MmpL3 protein using drug property filters and glide XP docking scores. From this, the top nine compounds and the MmpL3-SQ109 crystal complex structure each underwent 2 × 200 ns MD simulations to probe the inhibitor binding energetics to MmpL3. Four of the nine compounds exhibited stable binding properties and favorable drug properties, suggesting these four compounds could be potential novel inhibitors of MmpL3 for M. tuberculosis.

2.
Food Chem Toxicol ; 181: 114064, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793470

RESUMO

In this context, phytochemicals were extracted from Ranunculus constantinopolitanus using ethyl acetate (EA), ethanol, ethanol/water (70%), and water solvent. The analysis encompassed quantification of total phenolic and flavonoid content using spectrophotometric assays, chemical profiling via high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) for the extracts, and assessment of antioxidant activity via 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), metal chelating (MCA), and phosphomolybdenum (PBD) assays. Moreover, antimicrobial activity was assessed against four different bacterial strains, as well as various yeasts. Enzyme inhibitory activities were evaluated against five types of enzymes. Additionally, the extracts were examined for their anticancer and protective effects on several cancer cell lines and the human normal cell line. All of the extracts exhibited significant levels of ferulic acid, kaempferol, and caffeic acid. All tested extracts demonstrated antimicrobial activity, with Escherichia coli and Pseudomonas aeruginosa being most sensitive to EA and ethanol extracts. Molecular docking studies revealed that kaempferol-3-O-glucoside strong interactions with AChE, BChE and tyrosinase. In addition, network pharmacology showed an association between gastric cancer and kaempferol-3-O-glucoside. Based on the results, R. constantinopolitanus can be a potential reservoir of bioactive compounds for future bioproduct innovation and pharmaceutical industries.


Assuntos
Anti-Infecciosos , Ranunculus , Humanos , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Água , Etanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise
3.
ACS Omega ; 8(36): 32404-32423, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720760

RESUMO

Pain drugs targeting mu-opioid receptors face major addiction problems that have caused an epidemic. The delta-opioid receptor (DOR) has shown to not cause addictive effects when bound to an agonist. While the active conformation of the DOR in complex with agonist DPI-287 has been recently solved, there are still no FDA-approved agonists targeting it, providing the opportunity for structure-based virtual screening. In this study, the conformational plasticity of the DOR was probed using molecular dynamics (MD) simulations, identifying two representative conformations from clustering analysis. The two MD conformations as well as the crystal conformation of DOR were used to screen novel compounds from the ZINC database (17 million compounds), in which 69 drugs were picked as potential compounds based on their docking scores. Notably, 37 out of the 69 compounds were obtained from the simulated conformations. The binding stability of the 69 compounds was further investigated using MD simulations. Based on the MM-GBSA binding energy and the predicted drug properties, eight compounds were chosen as the most favorable, six of which were from the simulated conformations. Using a dynamic network model, the communication between the crystal agonist and the top eight molecules with the receptor was analyzed to confirm if these novel compounds share a similar activation mechanism to the crystal ligand. Encouragingly, docking of these eight compounds to the other two opioid receptors (kappa and mu) suggests their good selectivity toward DOR.

4.
J Chem Inf Model ; 63(16): 5356-5374, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37589273

RESUMO

The mycolic acid transporter MmpL3 is driven by proton motive forces (PMF) and functions via an antiport mechanism. Although the crystal structures of the Mycobacterium smegmatis MmpL3 transporter alone and in complex with a trehalose monomycolate (TMM) substrate and an antituberculosis drug candidate SQ109 under Phase 2b-3 Clinical Trials are available, no water and no conformational change in MmpL3 were observed in these structures to explain SQ109's inhibition mechanism of proton and TMM transportation. In this study, molecular dynamics simulations of both apo form and inhibitor-bound MmpL3 in an explicit membrane were used to decipher the inhibition mechanism of SQ109. In the apo system, the close-open motion of the two TM domains, likely driven by the proton translocation, drives the close-open motion of the two PD domains, presumably allowing for TMM translocation. In contrast, in the holo system, the two PD domains are locked in a closed state, and the two TM domains are locked in an off pathway wider open state due to the binding of the inhibitor. Consistent with the close-open motion of the two PD domains, TMM entry size changes in the apo system, likely loading and moving the TMM, but does not vary much in the holo system and probably impair the movement of the TMM. Furthermore, we observed that water molecules passed through the central channel of the MmpL3 transporter to the cytoplasmic side in the apo system but not in the holo system, with a mean passing time of ∼135 ns. Because water wires play an essential role in transporting protons, our findings shed light on the importance of PMF in driving the close-open motion of the two TM domains. Interestingly, the key channel residues involved in water passage display considerable overlap with conserved residues within the MmpL protein family, supporting their critical function role.


Assuntos
Mycobacterium tuberculosis , Prótons , Proteínas de Membrana Transportadoras , Transporte Biológico
5.
Amino Acids ; 55(12): 1729-1743, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37517044

RESUMO

Adenosine deaminase (ADA) is a Zn2+-containing enzyme that catalyzes the irreversible deamination of adenosine to inosine or deoxyadenosine to deoxyinosine. In addition to this enzymatic function, ADA mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. ADA is implicated in cardiovascular pathologies such as atherosclerosis and certain types of cancers, including lymphoma and leukemia. To date, only two drugs (pentostatin and cladribine) have been approved for the treatment of hairy cell leukemia. In search of natural ADA inhibitors, we demonstrated the binding of selected phenolic compounds to the active site of ADA using molecular docking and molecular dynamics simulation. Our results show that phenolic compounds (chlorogenic acid, quercetin, and hyperoside) stabilized the ADA complex by forming persistent interactions with the catalytically essential Zn2+ ion. Furthermore, MM-GBSA ligand binding affinity calculations revealed that hyperoside had a comparable binding energy score (ΔG = - 46.56 ± 8.26 kcal/mol) to that of the cocrystal ligand in the ADA crystal structure (PDB ID: 1O5R) (ΔG = - 51.97 ± 4.70 kcal/mol). Similarly, chlorogenic acid exhibited a binding energy score (ΔG = - 18.76 ± 4.60 kcal/mol) comparable to those of the two approved ADA inhibitor drugs pentostatin (ΔG = - 14.54 ± 2.25 kcal/mol) and cladribine (ΔG = - 25.52 ± 4.10 kcal/mol) while quercetin was found to have modest binding affinity (ΔG = - 8.85 ± 7.32 kcal/mol). This study provides insights into the possible inhibitory potential of these phenolic compounds against ADA.


Assuntos
Inibidores de Adenosina Desaminase , Pentostatina , Inibidores de Adenosina Desaminase/farmacologia , Inibidores de Adenosina Desaminase/química , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Cladribina , Ligantes , Ácido Clorogênico , Simulação de Dinâmica Molecular
6.
Comput Biol Med ; 153: 106522, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36638615

RESUMO

The genomic substitution rate (GSR) of SARS-CoV-2 exhibits a molecular clock feature and does not change under fluctuating environmental factors such as the infected human population (10°-107), vaccination etc. The molecular clock feature is believed to be inconsistent with the selectionist theory (ST). The GSR shows lack of dependence on the effective population size, suggesting Ohta's nearly neutral theory (ONNT) is not applicable to this virus. Big variation of the substitution rate within its genome is also inconsistent with Kimura's neutral theory (KNT). Thus, all three existing evolution theories fail to explain the evolutionary nature of this virus. In this paper, we proposed a Segment Substitution Rate Model (SSRM) under non-neutral selections and pointed out that a balanced mechanism between negative and positive selection of some segments that could also lead to the molecular clock feature. We named this hybrid mechanism as near-neutral balanced selection theory (NNBST) and examined if it was followed by SARS-CoV-2 using the three independent sets of SARS-CoV-2 genomes selected by the Nextstrain team. Intriguingly, the relative substitution rate of this virus exhibited an L-shaped probability distribution consisting with NNBST rather than Poisson distribution predicted by KNT or an asymmetric distribution predicted by ONNT in which nearly neutral sites are believed to be slightly deleterious only, or the distribution that is lack of nearly neutral sites predicted by ST. The time-dependence of the substitution rates for some segments and their correlation with the vaccination were observed, supporting NNBST. Our relative substitution rate method provides a tool to resolve the long standing "neutralist-selectionist" controversy. Implications of NNBST in resolving Lewontin's Paradox is also discussed.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , SARS-CoV-2/genética , COVID-19/genética , Genoma , Evolução Biológica , Evolução Molecular
7.
Chem Phys Lett ; 799: 139638, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35475235

RESUMO

The binding of the active form of Remdesivir (RTP) to RNA-dependent RNA Polymerase (RdRp) of SARS-CoV-2 was studied using molecular dynamics simulation. The RTP maintained the interactions observed in the experimental cryo-EM structure. Next, we designed new analogues of RTP, which not only binds to the RNA primer strand in a similar pose as that of RTP, but also binds more strongly than RTP does as predicted by MM-PBSA binding energy. This suggest that these analogues might be able to covalently link to the primer strand as RTP, but their 3' modification would terminate the primer strand growth.

8.
Int J Biol Macromol ; 180: 355-364, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744247

RESUMO

The thermal unfolding of the copper redox protein azurin was studied in the presence of four different amino acid-based ionic liquids (ILs), all of which have tetramethylguanidium as cation. The anionic amino acid includes two with alcohol side chains, serine and threonine, and two with carboxylic acids, aspartate and glutamate. Control experiments showed that amino acids alone do not significantly change protein stability and pH changes anticipated by the amino acid nature have only minor effects on the protein. With the ILs, the protein is destabilized and the melting temperature is decreased. The two ILs with alcohol side chains strongly destabilize the protein while the two ILs with acid side chains have weaker effects. Unfolding enthalpy (ΔHunf°) and entropy (ΔSunf°) values, derived from fits of the unfolding data, show that some ILs increase ΔHunf°while others do not significantly change this value. All ILs, however, increase ΔSunf°. MD simulations of both the folded and unfolded protein conformations in the presence of the ILs provide insight into the different IL-protein interactions and how they affect the ΔHunf° values. The simulations also confirm that the ILs increase the unfolded state entropies which can explain the increased ΔSunf° values.


Assuntos
Aminoácidos/química , Azurina/química , Entropia , Líquidos Iônicos/química , Metilguanidina/análogos & derivados , Metilguanidina/química , Temperatura de Transição , Ânions/química , Azurina/metabolismo , Cátions/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Líquidos Iônicos/metabolismo , Simulação de Dinâmica Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína
9.
Molecules ; 26(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478102

RESUMO

In the past decade, innovative protein therapies and bio-similar industries have grown rapidly. Additionally, ionic liquids (ILs) have been an area of great interest and rapid development in industrial processes over a similar timeline. Therefore, there is a pressing need to understand the structure and function of proteins in novel environments with ILs. Understanding the short-term and long-term stability of protein molecules in IL formulations will be key to using ILs for protein technologies. Similarly, ILs have been investigated as part of therapeutic delivery systems and implicated in numerous studies in which ILs impact the activity and/or stability of protein molecules. Notably, many of the proteins used in industrial applications are involved in redox chemistry, and thus often contain metal ions or metal-associated cofactors. In this review article, we focus on the current understanding of protein structure-function relationship in the presence of ILs, specifically focusing on the effect of ILs on metal containing proteins.


Assuntos
Líquidos Iônicos/farmacologia , Metaloproteínas/química , Metaloproteínas/metabolismo , Relação Estrutura-Atividade
10.
Comput Biol Med ; 129: 104156, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33260103

RESUMO

The RNA-dependent RNA polymerase (RdRp) is a key enzyme which regulates the viral replication of SARS-CoV-2. Remdesivir (RDV) is clinically used drug which targets RdRp, however its mechanism of action remains elusive. This study aims to find out the binding dynamics of active Remdesivir-triphosphate (RDV-TP) to RdRp by means of molecular dynamics (MD) simulation. We built a homology model of RdRp along with RNA and manganese ion using RdRp hepatitis C virus and recent SARS-CoV-2 structures. We determined that the model was stable during the 500 ns MD simulations. We then employed the model to study the binding of RDV-TP to RdRp during three independent 500 ns MD simulations. It was revealed that the interactions of protein and template-primer RNA were dominated by salt bridge interactions with phosphate groups of RNA, while interactions with base pairs of template-primer RNA were minimal. The binding of RDV-TP showed that the position of phosphate groups was at the entry of the NTP channel and it was stabilized by the interactions with K551, R553, and K621, while the adenosine group on RDV-TP was pairing with U2 of the template strand. The manganese ion was located close to D618, D760, and D761, and helps in stabilization of the phosphate groups of RDV-TP. Further we identified three hits from the natural product database that pose similar to RDV-TP while having lower binding energies than that of RDV-TP, and that SN00359915 had binding free energy about three times lower than that of RDV-TP.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , Monofosfato de Adenosina/metabolismo , Alanina/metabolismo , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , RNA Polimerase Dependente de RNA/química
11.
Phys Chem Chem Phys ; 22(39): 22567-22583, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33000836

RESUMO

D089-0563 is a highly promising anti-cancer compound that selectively binds the transcription-silencing G-quadruplex element (Pu27) at the promoter region of the human c-MYC oncogene; however, its binding mechanism remains elusive. The structure of Pu27 is not available due to its polymorphism, but the G-quadruplex structures of its two shorter derivatives in complex with a ligand (Pu24/Phen-DC3 and Pu22/DC-34) are available and show significant structural variance as well as different ligand binding patterns in the 3' region. Because D089-0563 shares the same scaffold as DC34 while having a significantly different scaffold from Phen-DC3, we picked Pu24 instead of Pu22 for this study in order to gain additional ligand binding insight. Using free ligand molecular dynamics binding simulations (33 µs), we probed the binding of D089-0563 to Pu24. Our clustering analysis identified three binding modes (top, side, and bottom) and subsequent MMPBSA binding energy analysis identified the top mode as the most thermodynamically stable. Our Markov State Model (MSM) analysis revealed that there are three parallel pathways for D089-0563 to the top mode from unbound state and that the ligand binding follows the conformational selection mechanism. Combining our predicted complex structures with the two experimental structures, it is evident that structural differences in the 3' region between Pu24 and Pu22 lead to different binding behaviors despite having similar ligands; this also explains the different promoter activity caused by the two G-quadruplex sequences observed in a recent synthetic biology study. Based on interaction insights, 625 D089-0563 derivatives were designed and docked; 59 of these showed slightly improved docking scores.


Assuntos
Proteínas de Ligação a DNA/química , Quadruplex G , Ligantes , Simulação de Dinâmica Molecular , Fatores de Transcrição/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA