Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Transl Res ; 269: 76-93, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38325750

RESUMO

Chronic obstructive pulmonary disease (COPD) is a prevalent lung disease usually resulting from cigarette smoking (CS). Cigarette smoking induces oxidative stress, which causes inflammation and alveolar epithelial cell apoptosis and represents a compelling therapeutic target for COPD. Purified human platelet-derived exosome product (PEP) is endowed with antioxidant enzymes and immunomodulatory molecules that mediate tissue repair. In this study, a murine model of CS-induced emphysema was used to determine whether nebulized PEP can influence the development of CS-induced emphysema through the mitigation of oxidative stress and inflammation in the lung. Nebulization of PEP effectively delivered the PEP vesicles into the alveolar region, with evidence of their uptake by type I and type II alveolar epithelial cells and macrophages. Lung function testing and morphometric assessment showed a significant attenuation of CS-induced emphysema in mice treated with nebulized PEP thrice weekly for 4 weeks. Whole lung immuno-oncology RNA sequencing analysis revealed that PEP suppressed several CS-induced cell injuries and inflammatory pathways. Validation of inflammatory cytokines and apoptotic protein expression on the lung tissue revealed that mice treated with PEP had significantly lower levels of S100A8/A9 expressing macrophages, higher levels of CD4+/FOXP3+ Treg cells, and reduced NF-κB activation, inflammatory cytokine production, and apoptotic proteins expression. Further validation using in vitro cell culture showed that pretreatment of alveolar epithelial cells with PEP significantly attenuated CS extract-induced apoptotic cell death. These data show that nebulization of exosomes like PEP can effectively deliver exosome cargo into the lung, mitigate CS-induced emphysema in mice, and suppress oxidative lung injury, inflammation, and apoptotic alveolar epithelial cell death.


Assuntos
Plaquetas , Fumar Cigarros , Vesículas Extracelulares , Camundongos Endogâmicos C57BL , Enfisema Pulmonar , Animais , Vesículas Extracelulares/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/etiologia , Camundongos , Fumar Cigarros/efeitos adversos , Plaquetas/metabolismo , Humanos , Nebulizadores e Vaporizadores , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos
2.
Gene ; 851: 146928, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36191822

RESUMO

Bone formation is controlled by histone modifying enzymes that regulate post-translational modifications on nucleosomal histone proteins and control accessibility of transcription factors to gene promoters required for osteogenesis. Enhancer of Zeste homolog 2 (EZH2/Ezh2), a histone H3 lysine 27 (H3K27) methyl transferase, is a suppressor of osteoblast differentiation. Ezh2 is regulated by SET and MYND domain-containing protein 2 (SMYD2/Smyd2), a lysine methyltransferase that modifies both histone and non-histone proteins. Here, we examined whether Smyd2 modulates Ezh2 suppression of osteoblast differentiation. Musculoskeletal RNA-seq data show that SMYD2/Smyd2 is the most highly expressed SMYD/Smyd member in human bone tissues and mouse osteoblasts. Smyd2 loss of function analysis in mouse MC3T3 osteoblasts using siRNA depletion enhances proliferation and calcium deposition. Loss of Smyd2 protein does not affect alkaline phosphatase activity nor does it result in a unified expression response for standard osteoblast-related mRNA markers (e.g., Bglap, Ibsp, Spp1, Sp7), indicating that Smyd2 does not directly control osteoblast differentiation. Smyd2 protein depletion enhances levels of the osteo-suppressive Ezh2 protein and H3K27 trimethylation (H3K27me3), as expected from increased cell proliferation, while elevating the osteo-inductive Runx2 protein. Combined siRNA depletion of both Smyd2 and Ezh2 protein is more effective in promoting calcium deposition when compared to loss of either protein. Collectively, our results indicate that Smyd2 inhibits proliferation and indirectly the subsequent mineral deposition by osteoblasts. Mechanistically, Smyd2 represents a functional epigenetic regulator that operates in parallel to the suppressive effects of Ezh2 and H3K27 trimethylation on osteoblast differentiation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Lisina , Camundongos , Animais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , RNA Interferente Pequeno/metabolismo , Cálcio/metabolismo , Domínios MYND , Osteoblastos/metabolismo , Histonas/metabolismo , Proliferação de Células/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
4.
NPJ Regen Med ; 7(1): 58, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175423

RESUMO

Urinary incontinence afflicts up to 40% of adult women in the United States. Stress urinary incontinence (SUI) accounts for approximately one-third of these cases, precipitating ~200,000 surgical procedures annually. Continence is maintained through the interplay of sub-urethral support and urethral sphincter coaptation, particularly during activities that increase intra-abdominal pressure. Currently, surgical correction of SUI focuses on the re-establishment of sub-urethral support. However, mesh-based repairs are associated with foreign body reactions and poor localized tissue healing, which leads to mesh exposure, prompting the pursuit of technologies that restore external urethral sphincter function and limit surgical risk. The present work utilizes a human platelet-derived CD41a and CD9 expressing extracellular vesicle product (PEP) enriched for NF-κB and PD-L1 and derived to ensure the preservation of lipid bilayer for enhanced stability and compatibility with hydrogel-based sustained delivery approaches. In vitro, the application of PEP to skeletal muscle satellite cells in vitro drove proliferation and differentiation in an NF-κB-dependent fashion, with full inhibition of impact on exposure to resveratrol. PEP biopotentiation of collagen-1 and fibrin glue hydrogel achieved sustained exosome release at 37 °C, creating an ultrastructural "bead on a string" pattern on scanning electron microscopy. Initial testing in a rodent model of latissimus dorsi injury documented activation of skeletal muscle proliferation of healing. In a porcine model of stress urinary incontinence, delivery of PEP-biopotentiated collagen-1 induced functional restoration of the external urethral sphincter. The histological evaluation found that sustained PEP release was associated with new skeletal muscle formation and polarization of local macrophages towards the regenerative M2 phenotype. The results provided herein serve as the first description of PEP-based biopotentiation of hydrogels implemented to restore skeletal muscle function and may serve as a promising approach for the nonsurgical management of SUI.

5.
Sci Rep ; 12(1): 13361, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922466

RESUMO

High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.


Assuntos
MicroRNAs , Animais , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Diferenciação Celular , Doxiciclina/metabolismo , Feminino , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética
6.
Aesthet Surg J ; 42(10): 1185-1193, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35689936

RESUMO

BACKGROUND: Exosomes are regenerative mediators for skin rejuvenation. Human platelet extract (HPE) is an allogeneic exosome product derived from US-sourced, leukocyte-reduced apheresed platelets with consistent purity and potency. OBJECTIVES: The authors sought to better characterize the safety and tolerability of novel HPE (plated) Intensive Repair Serum (Rion Aesthetics, Rochester, MN) and its maximal effects on skin rejuvenation at 6 weeks. METHODS: This prospective, single-arm, non-randomized, longitudinal study investigated the safety and efficacy of HPE. Structured sub-analysis evaluated multifactorial improvement in skin health following standardized skin care regimen to determine the maximal effect. Evaluation at baseline and 6 weeks included participant questionnaires and photo documentation with VISIA-CR Generation 5 3D PRIMOS (Canfield Scientific Inc, Fairfield, NJ). RESULTS: VISIA-CR imaging yielded quantifiable and statistically significant improvements in overall skin health (skin health score). A greater score correlated to greater overall skin health, and there was a statistically significant mean delta improvement of 224.2 ± 112.8 (mean ± standard deviation, P ≤ 0.0001) in skin health score at 6 weeks compared with baseline. This correlated to reduction in redness, wrinkles, and melanin production across all cosmetic units (P = 0.005, P = 0.0023, P ≤ 0.0001, respectively) and significant improvements in luminosity and color evenness (P ≤ 0.001). CONCLUSIONS: A topically applied platelet-derived exosome product, HPE, induced normalization to skin health at 4 to 6 weeks with improved various clinical measures of facial photodamage and cutaneous aging. It is safe, well-tolerated, and well-liked by participants.


Assuntos
Exossomos , Rejuvenescimento , Envelhecimento da Pele , Humanos , Estudos Longitudinais , Estudos Prospectivos , Pele , Resultado do Tratamento
7.
Bone ; 154: 116234, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34700039

RESUMO

Differentiation of multi-potent mesenchymal stromal cells (MSCs) is directed by the activities of lineage-specific transcription factors and co-factors. A subset of these proteins controls the accessibility of chromatin by recruiting histone acetyl transferases or deacetylases that regulate acetylation of the N-termini of H3 and H4 histone proteins. Bromodomain (BRD) proteins recognize these acetylation marks and recruit the RNA pol II containing transcriptional machinery. Our previous studies have shown that Brd4 is required for osteoblast differentiation in vitro. Here, we investigated the role of Brd4 on endochondral ossification in C57BL/6 mice and chondrogenic differentiation in cell culture models. Conditional loss of Brd4 in the mesenchyme (Brd4 cKO, Brd4fl/fl: Prrx1-Cre) yields smaller mice that exhibit alteration in endochondral ossification. Importantly, abnormal growth plate morphology and delayed long bone formation is observed in juvenile Brd4 cKO mice. One week old Brd4 cKO mice have reduced proliferative and hypertrophic zones within the physis and exhibit a delay in the formation of the secondary ossification center. At the cellular level, Brd4 function is required for chondrogenic differentiation and maturation of both ATDC5 cells and immature mouse articular chondrocytes. Mechanistically, Brd4 loss suppresses Sox9 levels and reduces expression of Sox9 and Runx2 responsive endochondral genes (e.g., Col2a1, Acan, Mmp13 and Sp7/Osx). Collectively, our results indicate that Brd4 is a key epigenetic regulator required for normal chondrogenesis and endochondral ossification.


Assuntos
Condrogênese , Proteínas Nucleares/metabolismo , Osteogênese , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Condrócitos/metabolismo , Condrogênese/genética , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia
8.
JBMR Plus ; 5(10): e10520, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34693189

RESUMO

Bromodomain (BRD) proteins are histone code interpreters that recognize acetylated lysines and link the dynamic state of chromatin with the transcriptional machinery. Here, we demonstrate that ablation of the Brd4 gene in primary mouse bone marrow-derived mesenchymal stem cells via a conditional Brd4fl/fl allele suppresses osteogenic lineage commitment. Remarkably, loss of Brd4 function also enhances expression of genes in engineered adenoviral vectors, including Cre recombinase and green fluorescent protein (GFP). Similarly, vector-based expression of BMP2 mRNA and protein levels are enhanced upon Brd4 depletion in cells transduced with an adenoviral vector that expresses BMP2 (Ad-BMP2). Importantly, Brd4 depletion in MC3T3-E1 and human adipose-derived mesenchymal stem cells (AMSCs) transduced with Ad-BMP2 enhances osteogenic differentiation of naïve MC3T3-E1 cells via paracrine mechanisms based on transwell and conditioned medium studies. Our studies indicate that Brd4 depletion enhances adenoviral transgene expression in mammalian cells, which can be leveraged as a therapeutic strategy to improve viral vector-based gene therapies. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Bone ; 150: 115993, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33940225

RESUMO

Skeletal development and bone formation are regulated by epigenetic mechanisms that either repress or enhance osteogenic commitment of mesenchymal stromal/stem cells and osteoblasts. The transcriptional suppressive trimethylation of histone 3 lysine 27 (H3K27me3) hinders differentiation of pre-committed osteoblasts. Osteoblast maturation can be stimulated by genetic loss of the H3K27 methyltransferase Ezh2 which can also be mimicked pharmacologically using the classical Ezh2 inhibitor GSK126. Identification of other Ezh2 inhibitors (iEzh2) that enhance osteogenic potential would increase chemical options for developing new bone stimulatory compounds. In this study, we examined a panel of iEzh2s and show that all eight inhibitors we tested are capable of accelerating osteoblast differentiation to different degrees at concentrations that are well below cytotoxic concentrations. Inhibition of Ezh2 is commensurate with loss of cellular H3K27me3 levels while forced expression of Ezh2 reverses the effect of Ezh2 suppression. Reduced Ezh2 function by siRNA depletion of Ezh2 mRNA and protein levels also stimulates osteoblastogenesis, consistent with the specificity of iEzh2 to target the active site of Ezh2. Diminished Ezh2 levels preempt the effects of iEzh2s on H3K27me3. GSK126, EPZ-6438 and siRNA depletion of Ezh2 each are effective in reducing H3K27me3 levels. However, EPZ-6438 is more potent than GSK126 in stimulating osteoblastogenesis, as reflected by increased extracellular matrix mineralization. Collectively, our data indicate that Ezh2 inhibitors properly target Ezh2 consistent with their biochemical affinities. The range of compounds capable of promoting osteogenesis presented in this study offers the opportunity to develop diverse bone anabolic strategies for distinct clinical scenarios, including spine fusion, non-union of bone and dental implant enhancement.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Osteogênese , Diferenciação Celular , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Osteoblastos/metabolismo , Osteogênese/genética
10.
Regen Med ; 16(3): 197-206, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33622054

RESUMO

The biology of regenerative medicine has steadily matured, providing the foundation for randomized clinical trials and translation into validated applications. Today, the growing regenerative armamentarium is poised to impact disease management, yet a gap in training next-generation healthcare providers, equipped to adopt and deliver regenerative options, has been exposed. This special report highlights a multiyear experience in developing and deploying a comprehensive regenerative curriculum for medical trainees. For academicians and institutions invested in establishing a formalized regenerative medicine syllabus, the Regenerative Medicine and Surgery course provides a patient-focused prototype for next-generation learners, offering a dedicated educational experience that encompasses discovery, development and delivery of regenerative solutions. Built with the vision of an evolving regenerative care model, this transdisciplinary endeavor could serve as an adoptable education portal to advance the readiness of the emergent regenerative healthcare workforce globally.


Assuntos
Currículo , Medicina Regenerativa , Atenção à Saúde , Humanos , Medicina Regenerativa/educação , Recursos Humanos
11.
Bone ; 143: 115659, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979540

RESUMO

Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.


Assuntos
Neoplasias , Complexo Repressor Polycomb 1 , Animais , Autorrenovação Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona , Histonas , Humanos , Ligases , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética
12.
Gene X ; 5: 100027, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32550554

RESUMO

Mechanical loading-related strains trigger bone formation by osteoblasts while suppressing resorption by osteoclasts, uncoupling the processes of formation and resorption. Osteocytes may orchestrate this process in part by secreting sclerostin (SOST), which inhibits osteoblasts, and expressing receptor activator of nuclear factor-κB ligand (RANKL/TNFSF11) which recruits osteoclasts. Both SOST and RANKL are targets of the master osteoblastic transcription factor RUNX2. Subjecting human osteoblastic Saos-2 cells to strain by four point bending down-regulates their expression of SOST and RANKL without altering RUNX2 expression. RUNX2 knockdown increases basal SOST expression, but does not alter SOST down-regulation following strain. Conversely, RUNX2 knockdown does not alter basal RANKL expression, but prevents its down-regulation by strain. Chromatin immunoprecipitation revealed RUNX2 occupies a region of the RANKL promoter containing a consensus RUNX2 binding site and its occupancy of this site decreases following strain. The expression of epigenetic acetyl and methyl writers and readers was quantified by RT-qPCR to investigate potential epigenetic bases for this change. Strain and RUNX2 knockdown both down-regulate expression of the bromodomain acetyl reader BRD2. BRD2 and RUNX2 co-immunoprecipitate, suggesting interaction within regulatory complexes, and BRD2 was confirmed to interact with the RUNX2 promoter. BRD2 also occupies the RANKL promoter and its occupancy was reduced following exposure to strain. Thus, RUNX2 may contribute to bone remodeling by suppressing basal SOST expression, while facilitating the acute strain-induced down-regulation of RANKL through a mechanosensitive epigenetic loop involving BRD2.

13.
J Biol Chem ; 295(23): 7877-7893, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32332097

RESUMO

Bone-stimulatory therapeutics include bone morphogenetic proteins (e.g. BMP2), parathyroid hormone, and antibody-based suppression of WNT antagonists. Inhibition of the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is both bone anabolic and osteoprotective. EZH2 inhibition stimulates key components of bone-stimulatory signaling pathways, including the BMP2 signaling cascade. Because of high costs and adverse effects associated with BMP2 use, here we investigated whether BMP2 dosing can be reduced by co-treatment with EZH2 inhibitors. Co-administration of BMP2 with the EZH2 inhibitor GSK126 enhanced differentiation of murine (MC3T3) osteoblasts, reflected by increased alkaline phosphatase activity, Alizarin Red staining, and expression of bone-related marker genes (e.g. Bglap and Phospho1). Strikingly, co-treatment with BMP2 (10 ng/ml) and GSK126 (5 µm) was synergistic and was as effective as 50 ng/ml BMP2 at inducing MC3T3 osteoblastogenesis. Similarly, the BMP2-GSK126 co-treatment stimulated osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells, reflected by induction of key osteogenic markers (e.g. Osterix/SP7 and IBSP). A combination of BMP2 (300 ng local) and GSK126 (5 µg local and 5 days of 50 mg/kg systemic) yielded more consistent bone healing than single treatments with either compound in a mouse calvarial critical-sized defect model according to results from µCT, histomorphometry, and surgical grading of qualitative X-rays. We conclude that EZH2 inhibition facilitates BMP2-mediated induction of osteogenic differentiation of progenitor cells and maturation of committed osteoblasts. We propose that epigenetic priming, coupled with bone anabolic agents, enhances osteogenesis and could be leveraged in therapeutic strategies to improve bone mass.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Piridonas/farmacologia , Células 3T3 , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Indóis/administração & dosagem , Camundongos , Osteoblastos/efeitos dos fármacos , Piridonas/administração & dosagem
14.
Genomics ; 112(4): 2703-2712, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145378

RESUMO

Arthrofibrosis is an abnormal histopathologic response, is debilitating for patients, and poses a substantial unsolved clinical challenge. This study characterizes molecular biomarkers and regulatory pathways associated with arthrofibrosis by comparing fibrotic and non-fibrotic human knee tissue. The fibrotic group encompasses 4 patients undergoing a revision total knee arthroplasty (TKA) for arthrofibrosis (RTKA-A) while the non-fibrotic group includes 4 patients undergoing primary TKA for osteoarthritis (PTKA) and 4 patients undergoing revision TKA for non-arthrofibrotic and non-infectious etiologies (RTKA-NA). RNA-sequencing of posterior capsule specimens revealed differences in gene expression between each patient group by hierarchical clustering, principal component analysis, and correlation analyses. Multiple differentially expressed genes (DEGs) were defined in RTKA-A versus PTKA patients (i.e., 2059 up-regulated and 1795 down-regulated genes) and RTKA-A versus RTKA-NA patients (i.e., 3255 up-regulated and 3683 down-regulated genes). Our findings define molecular and pathological markers of arthrofibrosis, as well as novel potential targets for risk profiling, early diagnosis and pharmacological treatment of patients.


Assuntos
Regulação da Expressão Gênica , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Artroplastia do Joelho , Fibrose , Ontologia Genética , Humanos , Articulação do Joelho/cirurgia , RNA-Seq , Reoperação , Transcriptoma
15.
J Bone Miner Res ; 35(6): 1149-1162, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32022326

RESUMO

During bone marrow stromal cell (BMSC) differentiation, both Wnt signaling and the development of a rigid cytoskeleton promote commitment to the osteoblastic over adipogenic lineage. ß-catenin plays a critical role in the Wnt signaling pathway to facilitate downstream effects on gene expression. We show that ß-catenin was additive with cytoskeletal signals to prevent adipogenesis, and ß-catenin knockdown promoted adipogenesis even when the actin cytoskeleton was depolymerized. ß-catenin also prevented osteoblast commitment in a cytoskeletal-independent manner, with ß-catenin knockdown enhancing lineage commitment. Chromatin immunoprecipitation (ChIP)-sequencing demonstrated binding of ß-catenin to the promoter of enhancer of zeste homolog 2 (EZH2), a key component of the polycomb repressive complex 2 (PRC2) complex that catalyzes histone methylation. Knockdown of ß-catenin reduced EZH2 protein levels and decreased methylated histone 3 (H3K27me3) at osteogenic loci. Further, when EZH2 was inhibited, ß-catenin's anti-differentiation effects were lost. These results indicate that regulating EZH2 activity is key to ß-catenin's effects on BMSCs to preserve multipotentiality. © 2020 American Society for Bone and Mineral Research.


Assuntos
Células da Medula Óssea , Proteína Potenciadora do Homólogo 2 de Zeste , Células-Tronco Mesenquimais , beta Catenina/metabolismo , Animais , Células da Medula Óssea/metabolismo , Cateninas , Diferenciação Celular , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese , Complexo Repressor Polycomb 2/metabolismo , Via de Sinalização Wnt
16.
Gene ; 737: 144437, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032745

RESUMO

Bone marrow-derived mesenchymal stromal/stem cells (BMSCs) have the potential to be employed in many different skeletal therapies. A major limitation to utilizing BMSCs as a therapeutic strategy in human disease and tissue regeneration is the low cell numbers obtained from initial isolation necessitating multiple cell passages that can lead to decreased cell quality. Adipose-derived mesenchymal stromal/stem cells (AMSCs) have been proposed as an alternative cell source for regenerative therapies; however the differentiation capacity of these cells differs from BMSCs. To understand the differences between BMSCs and AMSCs, we compared the global gene expression profiles of BMSCs and AMSCs and identified two genes, PCBP2 and ZNF467 that were differentially expressed between AMSCs and BMSCs. We demonstrate that PCBP2 and ZNF467 impact adipogenic but not osteogenic differentiation, further supporting evidence that AMSCs and BMSCs appear to be adapted to their microenvironment.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Proteínas de Ligação a RNA/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Linhagem da Célula , Células Cultivadas , Humanos , Proteínas de Ligação a RNA/genética , Fatores Genéricos de Transcrição/genética
18.
Gene ; 763S: 100027, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34493364

RESUMO

Mechanical loading-related strains trigger bone formation by osteoblasts while suppressing resorption by osteoclasts, uncoupling the processes of formation and resorption. Osteocytes may orchestrate this process in part by secreting sclerostin (SOST), which inhibits osteoblasts, and expressing receptor activator of nuclear factor-κB ligand (RANKL/TNFSF11) which recruits osteoclasts. Both SOST and RANKL are targets of the master osteoblastic transcription factor RUNX2. Subjecting human osteoblastic Saos-2 cells to strain by four point bending down-regulates their expression of SOST and RANKL without altering RUNX2 expression. RUNX2 knockdown increases basal SOST expression, but does not alter SOST down-regulation following strain. Conversely, RUNX2 knockdown does not alter basal RANKL expression, but prevents its down-regulation by strain. Chromatin immunoprecipitation revealed RUNX2 occupies a region of the RANKL promoter containing a consensus RUNX2 binding site and its occupancy of this site decreases following strain. The expression of epigenetic acetyl and methyl writers and readers was quantified by RT-qPCR to investigate potential epigenetic bases for this change. Strain and RUNX2 knockdown both down-regulate expression of the bromodomain acetyl reader BRD2. BRD2 and RUNX2 co-immunoprecipitate, suggesting interaction within regulatory complexes, and BRD2 was confirmed to interact with the RUNX2 promoter. BRD2 also occupies the RANKL promoter and its occupancy was reduced following exposure to strain. Thus, RUNX2 may contribute to bone remodeling by suppressing basal SOST expression, while facilitating the acute strain-induced down-regulation of RANKL through a mechanosensitive epigenetic loop involving BRD2.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteogênese/genética , Ligante RANK/genética , Fatores de Transcrição/genética , Sítios de Ligação/genética , Remodelação Óssea/genética , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Linhagem Celular , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Entorses e Distensões/genética , Estresse Mecânico
19.
J Cell Physiol ; 235(6): 5293-5304, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868237

RESUMO

Transcription networks and epigenetic mechanisms including DNA methylation, histone modifications, and noncoding RNAs control lineage commitment of multipotent mesenchymal progenitor cells. Proteins that read, write, and erase histone tail modifications curate and interpret the highly intricate histone code. Epigenetic reader proteins that recognize and bind histone marks provide a crucial link between histone modifications and their downstream biological effects. Here, we investigate the role of bromodomain-containing (BRD) proteins, which recognize acetylated histones, during osteogenic differentiation. Using RNA-sequencing (RNA-seq) analysis, we screened for BRD proteins (n = 40) that are robustly expressed in MC3T3 osteoblasts. We focused functional follow-up studies on Brd2 and Brd4 which are highly expressed in MC3T3 preosteoblasts and represent "bromodomain and extra terminal domain" (BET) proteins that are sensitive to pharmacological agents (BET inhibitors). We show that small interfering RNA depletion of Brd4 has stronger inhibitory effects on osteoblast differentiation than Brd2 loss as measured by osteoblast-related gene expression, extracellular matrix deposition, and alkaline phosphatase activity. Similar effects on osteoblast differentiation are seen with the BET inhibitor +JQ1, and this effect is reversible upon its removal indicating that this small molecule has no lasting effects on the differentiation capacity of MC3T3 cells. Mechanistically, we find that Brd4 binds at known Runx2 binding sites in promoters of bone-related genes. Collectively, these findings suggest that Brd4 is recruited to osteoblast-specific genes and may cooperate with bone-related transcription factors to promote osteoblast lineage commitment and maturation.


Assuntos
Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas Nucleares/genética , Osteogênese/genética , Fatores de Transcrição/genética , Células 3T3 , Acetilação , Animais , Sítios de Ligação/genética , Metilação de DNA , Epigênese Genética , Histonas/genética , Humanos , Camundongos , Osteoblastos/metabolismo , Domínios Proteicos/genética
20.
J Arthroplasty ; 35(4): 1123-1129, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31852609

RESUMO

BACKGROUND: The aims of this study were to determine the levels of cobalt (Co) and chromium (Cr) ions generated in simulators from metal-on-polyethylene (MoP) and ceramic-on-polyethylene (CoP) constructs. Furthermore, we aimed to investigate the cytotoxic effect of these ion levels on native tissues and their potential to modify periprosthetic joint infection risk. METHODS: We used in vitro culture of human adipose-derived mesenchymal stem cells (AMSCs) and Staphylococcus epidermidis cultures, respectively. Ten hip simulator constructs (5 MoP and 5 CoP) were assembled and run for 1,000,000 cycles in bovine serum and evaluated for CoCr concentration. Cytotoxicity and growth impact on AMSCs and S. epidermidis was compared between CoCr and inert silicon dioxide. RESULTS: After 1,000,000 cycles, mean MoP and CoP Co concentration was 2264 and 0.6 ng/mL, respectively (P < .001). Mean MoP and CoP Cr concentration was 217 and 4.3 ng/mL, respectively (P < .001). Mean MoP Co:Cr ratio was 10:1. Co ions were significantly more toxic to human AMSCs than control silicon dioxide in a dose-response manner (P < .001). S. epidermidis growth was not significantly impacted by Co concentrations observed in the simulators. CONCLUSION: MoP constructs built in ideal conditions generated substantial CoCr debris, highlighting a baseline risk with these implants that may be exacerbated by host factors or imperfect surgical technique. Evaluation of impact on AMSCs suggests that debris levels produced under simulator conditions can be cytotoxic. In addition, these concentrations did not potentiate or inhibit S. epidermidis growth, suggesting that elevated periprosthetic joint infection rates with adverse local tissue reaction are related to other factors potentially associated with tissue necrosis.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Animais , Artroplastia de Quadril/efeitos adversos , Bovinos , Cerâmica , Cromo , Cobalto , Prótese de Quadril/efeitos adversos , Humanos , Íons , Polietileno , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA