Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 19(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115857

RESUMO

Antibiotics lead to increased susceptibility to colonization by pathogenic organisms, with different effects on the host-microbiota relationship. Here, we show that metronidazole treatment of specific pathogen-free (SPF) mice results in a significant increase of the bacterial phylum Proteobacteria in fecal pellets. Furthermore, metronidazole in SPF mice decreases hind limb muscle weight and results in smaller fibers in the tibialis anterior muscle. In the gastrocnemius muscle, metronidazole causes upregulation of Hdac4, myogenin, MuRF1, and atrogin1, which are implicated in skeletal muscle neurogenic atrophy. Metronidazole in SPF mice also upregulates skeletal muscle FoxO3, described as involved in apoptosis and muscle regeneration. Of note, alteration of the gut microbiota results in increased expression of the muscle core clock and effector genes Cry2, Ror-ß, and E4BP4. PPARγ and one of its important target genes, adiponectin, are also upregulated by metronidazole. Metronidazole in germ-free (GF) mice increases the expression of other core clock genes, such as Bmal1 and Per2, as well as the metabolic regulators FoxO1 and Pdk4, suggesting a microbiota-independent pharmacologic effect. In conclusion, metronidazole in SPF mice results in skeletal muscle atrophy and changes the expression of genes involved in the muscle peripheral circadian rhythm machinery and metabolic regulation.


Assuntos
Metronidazol/uso terapêutico , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Contagem de Colônia Microbiana , Metabolismo Energético/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Metronidazol/farmacologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão , PPAR gama/genética , PPAR gama/metabolismo , Proteobactérias/efeitos dos fármacos , Proteobactérias/crescimento & desenvolvimento , RNA/metabolismo
2.
Sci Rep ; 8(1): 11338, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054525

RESUMO

The intestine is key for nutrient absorption and for interactions between the microbiota and its host. Therefore, the intestinal response to caloric restriction (CR) is thought to be more complex than that of any other organ. Submitting mice to 25% CR during 14 days induced a polarization of duodenum mucosa cell gene expression characterised by upregulation, and downregulation of the metabolic and immune/inflammatory pathways, respectively. The HNF, PPAR, STAT, and IRF families of transcription factors, particularly the Pparα and Isgf3 genes, were identified as potentially critical players in these processes. The impact of CR on metabolic genes in intestinal mucosa was mimicked by inhibition of the mTOR pathway. Furthermore, multiple duodenum and faecal metabolites were altered in CR mice. These changes were dependent on microbiota and their magnitude corresponded to microbial density. Further experiments using mice with depleted gut bacteria and CR-specific microbiota transfer showed that the gene expression polarization observed in the mucosa of CR mice is independent of the microbiota and its metabolites. The holistic interdisciplinary approach that we applied allowed us to characterize various regulatory aspects of the host and microbiota response to CR.


Assuntos
Restrição Calórica , Mucosa Intestinal/microbiologia , Microbiota , Animais , Duodeno/metabolismo , Fezes , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação/genética , Inflamação/patologia , Mucosa Intestinal/metabolismo , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Modelos Biológicos , Serina-Treonina Quinases TOR/metabolismo
3.
Sci Rep ; 6: 36937, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853235

RESUMO

Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes.


Assuntos
PPAR gama/metabolismo , Sistema Nervoso Simpático/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/fisiologia , Animais , Restrição Calórica/métodos , Mucosa Intestinal/metabolismo , Lipólise/fisiologia , Fígado/metabolismo , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo
4.
Am J Hum Genet ; 99(2): 299-317, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27476657

RESUMO

Vascular malformations are non-neoplastic expansions of blood vessels that arise due to errors during angiogenesis. They are a heterogeneous group of sporadic or inherited vascular disorders characterized by localized lesions of arteriovenous, capillary, or lymphatic origin. Vascular malformations that occur inside bone tissue are rare. Herein, we report loss-of-function mutations in ELMO2 (which translates extracellular signals into cellular movements) that are causative for autosomal-recessive intraosseous vascular malformation (VMOS) in five different families. Individuals with VMOS suffer from life-threatening progressive expansion of the jaw, craniofacial, and other intramembranous bones caused by malformed blood vessels that lack a mature vascular smooth muscle layer. Analysis of primary fibroblasts from an affected individual showed that absence of ELMO2 correlated with a significant downregulation of binding partner DOCK1, resulting in deficient RAC1-dependent cell migration. Unexpectedly, elmo2-knockout zebrafish appeared phenotypically normal, suggesting that there might be human-specific ELMO2 requirements in bone vasculature homeostasis or genetic compensation by related genes. Comparative phylogenetic analysis indicated that elmo2 originated upon the appearance of intramembranous bones and the jaw in ancestral vertebrates, implying that elmo2 might have been involved in the evolution of these novel traits. The present findings highlight the necessity of ELMO2 for maintaining vascular integrity, specifically in intramembranous bones.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Osso e Ossos/irrigação sanguínea , Proteínas do Citoesqueleto/genética , Mutação/genética , Transdução de Sinais/genética , Malformações Vasculares/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Alelos , Animais , Movimento Celular , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/metabolismo , Evolução Molecular , Feminino , Homozigoto , Humanos , Masculino , Fenótipo , Filogenia , Especificidade da Espécie , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas rac de Ligação ao GTP/genética
5.
Elife ; 52016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367842

RESUMO

In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by ß-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Metabolismo dos Lipídeos , Fígado/embriologia , Metabolismo , Leite/metabolismo , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Metabolismo Energético , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA