Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3547, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670976

RESUMO

Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible. Physaria fendleri naturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils.


Assuntos
Diacilglicerol O-Aciltransferase , Ácidos Graxos , Óleos de Plantas , Triglicerídeos , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese , Óleos de Plantas/metabolismo , Óleos de Plantas/química , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Lipase/metabolismo , Sementes/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Gotículas Lipídicas/metabolismo , Plantas Geneticamente Modificadas
2.
Methods Enzymol ; 683: 191-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087188

RESUMO

Diacylglycerols (DAGs) are anabolic precursors to membrane lipid and storage triacylglycerol biosynthesis, metabolic intermediates of lipid catabolism, and potent cellular signaling molecules. The different DAG molecular species that accumulate over development or in different tissues reflect the changing aspects of cellular lipid metabolism. Consequently, an accurate determination of DAG molecular species in biological samples is essential to understand various metabolic processes and their diagnostic relevance. However, quantification of DAG molecular species in various biological samples represents a challenging task because of their low abundance, hydrophobicity, and instability. This chapter describes the most common chromatographic (TLC and HPLC) and mass spectrometry (MS) methods used to analyze DAG molecular species. In addition, we directly compared the three methods using DAG obtained by phospholipase C hydrolysis of phosphatidylcholine purified from a Nicotiana benthamiana leaf extract. We conclude that each method identified similar major molecular species, however, the exact levels of those varied mainly due to sensitivity of the technique, differences in sample preparation, and processing. This chapter provides three different methods to analyze DAG molecular species, and the discussion of the benefits and challenges of each technique will aid in choosing the right method for your analysis.


Assuntos
Diglicerídeos , Espectrometria de Massas por Ionização por Electrospray , Diglicerídeos/análise , Diglicerídeos/química , Diglicerídeos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Fosfatidilcolinas
3.
Plant Physiol Biochem ; 196: 940-951, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36889233

RESUMO

The chemical and physical properties of vegetable oils are largely dictated by the ratios of 4-6 common fatty acids contained within each oil. However, examples of plant species that accumulate from trace amounts to >90% of certain unusual fatty acids in seed triacylglycerols have been reported. Many of the general enzymatic reactions that drive both common and unusual fatty acid biosynthesis and accumulation in stored lipids are known, but which isozymes have evolved to specifically fill this role and how they coordinate in vivo is still poorly understood. Cotton (Gossypium sp.) is the very rare example of a commodity oilseed that produces biologically relevant amounts of unusual fatty acids in its seeds and other organs. In this case, unusual cyclopropyl fatty acids (named after the cyclopropane and cyclopropene moieties within the fatty acids) are found in membrane and storage glycerolipids (e.g. seed oils). Such fatty acids are useful in the synthesis of lubricants, coatings, and other types of valuable industrial feedstocks. To characterize the role of cotton acyltransferases in cyclopropyl fatty acid accumulation for bioengineering applications, we cloned and characterized type-1 and type-2 diacylglycerol acyltransferases from cotton and compared their biochemical properties to that of litchi (Litchi chinensis), another cyclopropyl fatty acid-producing plant. The results presented from transgenic microbes and plants indicate both cotton DGAT1 and DGAT2 isozymes efficiently utilize cyclopropyl fatty acid-containing substrates, which helps to alleviate biosynthetic bottlenecks and enhances total cyclopropyl fatty acid accumulation in the seed oil.


Assuntos
Diacilglicerol O-Aciltransferase , Diglicerídeos , Diacilglicerol O-Aciltransferase/genética , Gossypium/genética , Isoenzimas , Aciltransferases , Plantas , Sementes/genética , Ácidos Graxos/química , Triglicerídeos , Óleos de Plantas/química , Plantas Geneticamente Modificadas
4.
Plant Sci ; 324: 111445, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36037983

RESUMO

Buglossoides arvensis is a burgeoning oilseed crop that contains an unique combination of ω-3 and ω-6 polyunsaturated fatty acids (PUFA), constituting ~80-85% of seed triacylglycerols (TAGs). To uncover the critical TAG biosynthetic pathways contributing for high PUFA accumulation, we performed lipidome of developing seeds and characterized acyltransferases involved in the final step of TAG biosynthesis. During seed development, distribution of lipid molecular species in individual lipid classes showed distinct patterns from an early-stage (6 days after flowering (DAF)) to the middle-stage (12 and 18 DAF) of oil biosynthesis. PUFA-containing TAG species drastically increased from 6 to 12 DAF. The expression profiles of key triacylglycerol biosynthesis genes and patterns of phosphatidylcholine, diacylglycerol and triacylglycerol molecular species during seed development were used to predict the contribution of diacylglycerol acyltransferases (DGAT1 and DGAT2) and phospholipid: diacylglycerol acyltransferases (PDAT1 and PDAT2) to PUFA-rich TAG biosynthesis. Our analysis suggests that DGATs play a crucial role in enriching TAGs with PUFA compared to PDATs. This was further confirmed by fatty acid feeding studies in yeast expressing acyltransferases. BaDGAT2 preferentially incorporated high amounts of PUFAs into TAG, compared to BaDGAT1. Our results provide insight into the molecular mechanisms of TAG accumulation in this plant and identify target genes for transgenic production of SDA in traditional oilseed crops.


Assuntos
Aciltransferases , Diglicerídeos , Aciltransferases/genética , Aciltransferases/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Lipidômica , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Triglicerídeos/metabolismo
5.
Front Plant Sci ; 13: 931310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720575

RESUMO

Physaria fendleri is a burgeoning oilseed crop that accumulates the hydroxy fatty acid (HFA), lesquerolic acid, and can be a non-toxic alternative crop to castor for production of industrially valuable HFA. Recently, P. fendleri was proposed to utilize a unique seed oil biosynthetic pathway coined "triacylglycerol (TAG) remodeling" that utilizes a TAG lipase to remove common fatty acids from TAG allowing the subsequent incorporation of HFA after initial TAG synthesis, yet the lipase involved is unknown. SUGAR DEPENDENT 1 (SDP1) has been characterized as the dominant TAG lipase involved in TAG turnover during oilseed maturation and germination. Here, we characterized the role of a putative PfeSDP1 in both TAG turnover and TAG remodeling. In vitro assays confirmed that PfeSDP1 is a TAG lipase and demonstrated a preference for HFA-containing TAG species. Seed-specific RNAi knockdown of PfeSDP1 resulted in a 12%-16% increase in seed weight and 14%-19% increase in total seed oil content with no major effect on seedling establishment. The increase in total oil content was primarily due to ~4.7% to ~14.8% increase in TAG molecular species containing two HFA (2HFA-TAG), and when combined with a smaller decrease in 1HFA-TAG content the proportion of total HFA in seed lipids increased 4%-6%. The results are consistent with PfeSDP1 involved in TAG turnover but not TAG remodeling to produce 2HFA-TAG. Interestingly, the concomitant reduction of 1HFA-TAG in PfeSDP1 knockdown lines suggests PfeSDP1 may have a role in reverse TAG remodeling during seed maturation that produces 1HFA-TAG from 2HFA-TAG. Overall, our results provide a novel strategy to enhance the total amount of industrially valuable lesquerolic acid in P. fendleri seeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA